Spaces:
Build error
Build error
import streamlit as st | |
from streamlit_drawable_canvas import st_canvas | |
from keras.models import load_model | |
import numpy as np | |
import cv2 | |
# Page config | |
st.set_page_config(page_title="ποΈ MNIST Digit Recognizer", layout="centered") | |
# Custom CSS styling | |
st.markdown(""" | |
<style> | |
.main { | |
background: linear-gradient(to right, #f7f7f7, #e3f2fd); | |
font-family: 'Segoe UI', sans-serif; | |
} | |
.title { | |
text-align: center; | |
font-size: 36px; | |
color: #0d47a1; | |
font-weight: bold; | |
margin-bottom: 10px; | |
} | |
.subtitle { | |
text-align: center; | |
font-size: 18px; | |
color: #424242; | |
margin-bottom: 40px; | |
} | |
.prediction-box { | |
background-color: #e3f2fd; | |
padding: 20px; | |
border-radius: 15px; | |
text-align: center; | |
margin-top: 20px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
.prediction-text { | |
font-size: 28px; | |
color: #0d47a1; | |
font-weight: bold; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Title | |
st.markdown('<div class="title">ποΈ Handwritten Digit Recognizer</div>', unsafe_allow_html=True) | |
st.markdown('<div class="subtitle">Draw any digit (0β9) and let the AI predict it!</div>', unsafe_allow_html=True) | |
# Sidebar settings | |
with st.sidebar: | |
st.header("π¨ Drawing Settings") | |
drawing_mode = st.selectbox("Drawing Tool", ("freedraw", "line", "rect", "circle", "transform")) | |
stroke_width = st.slider("Stroke Width", 1, 25, 10) | |
stroke_color = st.color_picker("Stroke Color", "#000000") | |
bg_color = st.color_picker("Background Color", "#FFFFFF") | |
bg_image = st.file_uploader("Background Image", type=["png", "jpg"]) | |
realtime_update = st.checkbox("Realtime Update", True) | |
# Load model | |
def load_mnist_model(): | |
return load_model("clone.keras") | |
model = load_mnist_model() | |
# Drawing canvas | |
canvas_result = st_canvas( | |
fill_color="rgba(255, 165, 0, 0.3)", | |
stroke_width=stroke_width, | |
stroke_color=stroke_color, | |
background_color=bg_color, | |
update_streamlit=realtime_update, | |
height=280, | |
width=280, | |
drawing_mode=drawing_mode, | |
key="canvas", | |
) | |
# Prediction logic | |
if canvas_result.image_data is not None: | |
#st.image(canvas_result.image_data, caption="πΌοΈ Your Drawing", use_column_width=True) | |
# Preprocess | |
img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY) | |
img = 255 - img | |
img_resized = cv2.resize(img, (28, 28)) | |
img_normalized = img_resized / 255.0 | |
img_reshaped = img_normalized.reshape((1, 28, 28)) | |
prediction = model.predict(img_reshaped) | |
st.markdown( | |
f""" | |
<div class="prediction-box"> | |
<div class="prediction-text">π’ Predicted Digit: {np.argmax(prediction)}</div> | |
</div> | |
""", unsafe_allow_html=True | |
) | |