Conquerorr000's picture
Update app.py
ad05698 verified
#!/usr/bin/env python3
"""
Turkish Medical Model API - No Flash Attention Dependency
Focus on LoRA loading with compiler support
"""
import os
import shutil
import logging
import time
import asyncio
import gc
from typing import Dict, Optional, List
import json
# CRITICAL: Set cache directories and compiler BEFORE importing anything
CACHE_DIR = "/tmp/hf_cache"
TRITON_CACHE = "/tmp/triton_cache"
# Set compiler environment variables FIRST
os.environ["CC"] = "gcc"
os.environ["CXX"] = "g++"
# Set environment variables for L4 optimization
os.environ["HF_HOME"] = CACHE_DIR
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
os.environ["HF_DATASETS_CACHE"] = CACHE_DIR
os.environ["HF_HUB_CACHE"] = CACHE_DIR
os.environ["TRITON_CACHE_DIR"] = TRITON_CACHE
os.environ["CUDA_CACHE_PATH"] = "/tmp/cuda_cache"
# L4 Performance optimization
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
# Compiler and build settings
os.environ["MAX_JOBS"] = "4"
# Keep compilation disabled for PyTorch
os.environ["TORCH_COMPILE"] = "0"
os.environ["PYTORCH_COMPILE"] = "0"
# Create cache directories
for cache_path in [CACHE_DIR, TRITON_CACHE, "/tmp/cuda_cache"]:
os.makedirs(cache_path, exist_ok=True)
os.chmod(cache_path, 0o777)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from peft import PeftModel
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get HF token
HF_TOKEN = os.getenv("HF_TOKEN")
# Global variables
tokenizer = None
model = None
generation_config = None
model_loaded = False
loading_error = None
device = "cuda:0"
lora_loaded = False
# Pydantic models
class Message(BaseModel):
role: str # "user" or "assistant"
content: str
class ChatRequest(BaseModel):
message: str
max_tokens: int = 200
temperature: float = 0.7
conversation_history: Optional[List[Message]] = []
class ConversationRequest(BaseModel):
messages: List[Message]
max_tokens: int = 200
temperature: float = 0.7
class ChatResponse(BaseModel):
response: str
generation_time: float
tokens_generated: int
conversation_turn: int
class HealthResponse(BaseModel):
status: str
model_loaded: bool
gpu_available: bool
error: Optional[str] = None
def check_compiler():
"""Check if C compiler is available"""
try:
import subprocess
result = subprocess.run(['gcc', '--version'], capture_output=True, text=True)
if result.returncode == 0:
logger.info("✅ GCC compiler found")
logger.info(f"🔧 GCC version: {result.stdout.split()[2]}")
return True
else:
logger.error("❌ GCC compiler not found")
return False
except Exception as e:
logger.error(f"❌ Compiler check failed: {e}")
return False
def setup_l4_optimization():
"""Setup optimizations specific to Nvidia L4 (without Flash Attention)"""
if torch.cuda.is_available():
# L4 specific settings
torch.cuda.set_per_process_memory_fraction(0.85) # Use 85% to leave room for LoRA
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
logger.info("🎯 L4 optimizations enabled: TF32, Memory optimized")
def clear_gpu_memory():
"""Optimized GPU memory cleanup for L4"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def setup_cache_directories():
"""Setup cache directories"""
cache_dirs = [CACHE_DIR, TRITON_CACHE, "/tmp/cuda_cache", "/tmp/.cache"]
for cache_dir in cache_dirs:
try:
os.makedirs(cache_dir, exist_ok=True)
os.chmod(cache_dir, 0o777)
logger.info(f"✅ Created cache dir: {cache_dir}")
except Exception as e:
logger.warning(f"⚠️ Could not create {cache_dir}: {e}")
def clear_cache_locks():
"""Clear cache locks"""
try:
all_cache_dirs = [CACHE_DIR, TRITON_CACHE, "/tmp/cuda_cache", "/tmp/.cache"]
for cache_dir in all_cache_dirs:
if os.path.exists(cache_dir):
for root, dirs, files in os.walk(cache_dir):
for file in files:
if file.endswith('.lock') or file.endswith('.incomplete'):
lock_file = os.path.join(root, file)
try:
os.remove(lock_file)
except:
pass
except Exception as e:
logger.warning(f"Could not clear cache locks: {e}")
def format_medical_conversation(messages: List[Message]) -> str:
"""Format conversation for Turkish medical context"""
conversation = "Bu bir Türkçe hasta-doktor görüşmesidir. Doktor profesyonel, empatik ve tıbbi bilgiye dayalı yanıtlar verir.\n\n"
for i, msg in enumerate(messages):
if msg.role == "assistant":
conversation += f"Doktor: {msg.content}\n"
else:
conversation += f"Hasta: {msg.content}\n"
conversation += "Doktor:"
return conversation
def clean_medical_response(response: str) -> str:
"""Clean and validate Turkish medical response"""
# Remove extra whitespace
response = response.strip()
# Remove role prefixes
prefixes_to_remove = ["Doktor:", "Hasta:", "Assistant:", "Human:", "Dr.", "Patient:"]
for prefix in prefixes_to_remove:
if response.startswith(prefix):
response = response[len(prefix):].strip()
# Remove unwanted dialogue patterns
unwanted_patterns = [
"Hasta :", "Hasta:", "HASTA:", "Dokтор:", "DOKTOR:", "DİĞER HASTA",
"DOKTÖR:", "(gülmeye başlıyor)", "(kıkırdayarak)", "arkada", "arkadan"
]
for pattern in unwanted_patterns:
response = response.replace(pattern, "")
# Clean sentences
sentences = response.split('.')
clean_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if (len(sentence) > 15 and
not any(bad_word in sentence.lower() for bad_word in ["hasta", "gülme", "kıkırd", "arkada"])):
clean_sentences.append(sentence)
if len(clean_sentences) >= 2:
break
if clean_sentences:
response = '. '.join(clean_sentences)
if not response.endswith('.'):
response += '.'
else:
response = "Bu konuda size yardımcı olmaya çalışayım. Lütfen belirtilerinizi daha detaylı anlatabilir misiniz?"
return response
async def load_model():
"""Load model with focus on LoRA compilation"""
global tokenizer, model, generation_config, model_loaded, loading_error, lora_loaded
if model_loaded:
return True
try:
logger.info("🚀 Loading Turkish Medical Model - LoRA Focus...")
# Check compiler first
compiler_available = check_compiler()
if not compiler_available:
logger.warning("⚠️ C compiler not available, LoRA compilation may fail")
setup_cache_directories()
clear_cache_locks()
setup_l4_optimization()
clear_gpu_memory()
start_time = time.time()
# Check GPU
if torch.cuda.is_available():
props = torch.cuda.get_device_properties(0)
total_memory = props.total_memory / (1024**3)
logger.info(f"🎮 GPU: {props.name}")
logger.info(f"🎮 Total VRAM: {total_memory:.1f}GB")
# Load tokenizer
logger.info("📚 Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
"Conquerorr000/llama-3.1-8b-turkish-medical-lora",
cache_dir=CACHE_DIR,
trust_remote_code=True,
token=HF_TOKEN,
use_fast=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info("✅ Tokenizer loaded successfully")
# Load base model with memory optimization for LoRA
logger.info("🧠 Loading base model (FP16 - optimized for LoRA)...")
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3.1-8B-Instruct",
cache_dir=CACHE_DIR,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
token=HF_TOKEN,
attn_implementation="eager", # Use eager attention (stable)
use_cache=True,
max_memory={0: "18GiB"} # Leave memory for LoRA
)
logger.info("✅ Base model loaded (eager attention)")
# Check memory after base model
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated(0) / (1024**3)
logger.info(f"🎮 Memory after base model: {allocated:.2f}GB")
# Load LoRA adapter with enhanced error handling
logger.info("🎯 Loading Turkish Medical LoRA adapter...")
try:
# Enhanced LoRA loading with multiple fallback strategies
logger.info("🔧 Attempting LoRA compilation...")
lora_model = PeftModel.from_pretrained(
model,
"Conquerorr000/llama-3.1-8b-turkish-medical-lora",
cache_dir=CACHE_DIR,
torch_dtype=torch.float16,
token=HF_TOKEN,
is_trainable=False,
device_map="auto"
)
logger.info("✅ Turkish Medical LoRA adapter loaded successfully!")
lora_loaded = True
# Try to merge LoRA for better performance
logger.info("🔗 Attempting to merge LoRA adapter...")
try:
# Check if we have enough memory for merging
if torch.cuda.is_available():
free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated(0)
free_gb = free_memory / (1024**3)
logger.info(f"🎮 Free memory for merge: {free_gb:.2f}GB")
if free_gb > 3.0: # Need at least 3GB for merge
model = lora_model.merge_and_unload()
logger.info("✅ Turkish Medical LoRA merged successfully!")
else:
logger.info("📝 Using LoRA as adapter (insufficient memory for merge)")
model = lora_model
except Exception as merge_error:
logger.warning(f"⚠️ LoRA merge failed: {merge_error}")
logger.info("📝 Using Turkish Medical LoRA as adapter")
model = lora_model
except Exception as lora_error:
logger.error(f"❌ Turkish Medical LoRA loading failed: {lora_error}")
# Try alternative LoRA loading methods
logger.info("🔄 Trying alternative LoRA loading...")
try:
# Alternative method: Load with CPU offload
lora_model = PeftModel.from_pretrained(
model,
"Conquerorr000/llama-3.1-8b-turkish-medical-lora",
cache_dir=CACHE_DIR,
torch_dtype=torch.float16,
token=HF_TOKEN,
is_trainable=False,
device_map=None # Load on CPU first
)
# Then move to GPU
lora_model = lora_model.to(device)
model = lora_model
lora_loaded = True
logger.info("✅ Turkish Medical LoRA loaded with alternative method!")
except Exception as alt_error:
logger.error(f"❌ Alternative LoRA loading also failed: {alt_error}")
logger.error("❌ CRITICAL: Model will not have Turkish medical fine-tuning!")
loading_error = f"LoRA loading failed: {str(lora_error)}"
lora_loaded = False
# Setup generation config optimized for Turkish medical responses
generation_config = GenerationConfig(
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
top_k=50,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
no_repeat_ngram_size=3,
use_cache=True
)
# Set to evaluation mode
model.eval()
# Final memory cleanup
clear_gpu_memory()
loading_time = time.time() - start_time
logger.info(f"✅ Model loading completed in {loading_time:.2f}s")
# Log final status
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
allocated = torch.cuda.memory_allocated(0) / (1024**3)
free = total_memory - allocated
logger.info(f"🎮 Final Memory: Allocated={allocated:.2f}GB, Free={free:.2f}GB")
status = "✅ TURKISH MEDICAL MODEL READY" if lora_loaded else "⚠️ BASE MODEL ONLY (NO MEDICAL TRAINING)"
logger.info(status)
model_loaded = True
return True
except Exception as e:
error_msg = f"Model loading failed: {str(e)}"
logger.error(f"❌ {error_msg}")
loading_error = error_msg
model_loaded = False
clear_gpu_memory()
return False
async def generate_response(messages: List[Message], max_tokens: int = 200, temperature: float = 0.7) -> Dict:
"""Generate Turkish medical response"""
global model, tokenizer, generation_config
if not model_loaded:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
start_time = time.time()
# Format conversation for Turkish medical context
conversation_text = format_medical_conversation(messages)
# Tokenize
inputs = tokenizer(
conversation_text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=1024,
add_special_tokens=True
)
# Move to GPU
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate with medical optimization - FIXED: removed duplicate attention_mask
gen_config = GenerationConfig(
max_new_tokens=min(max_tokens, 150),
temperature=temperature,
top_p=0.9,
top_k=50,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
no_repeat_ngram_size=3,
use_cache=True
)
with torch.no_grad():
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
generation_config=gen_config,
use_cache=True
)
# Decode response
input_length = inputs["input_ids"].shape[1]
generated_ids = outputs[0][input_length:]
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
# Clean Turkish medical response
response = clean_medical_response(generated_text)
generation_time = time.time() - start_time
# Cleanup
del outputs, generated_ids
torch.cuda.empty_cache()
return {
"response": response,
"generation_time": round(generation_time, 3),
"tokens_generated": len(generated_text.split()),
"conversation_turn": len(messages) + 1,
"lora_active": lora_loaded
}
except Exception as e:
logger.error(f"Generation error: {e}")
torch.cuda.empty_cache()
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
# Create FastAPI app
app = FastAPI(
title="Turkish Medical Model API",
description="Turkish medical conversation model - Stable build",
version="2.1.1"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
"""Load model on startup"""
logger.info("🚀 Starting API server - Stable build...")
logger.info(f"📁 HF Cache: {CACHE_DIR}")
logger.info(f"🎮 Target GPU: Nvidia L4 24GB")
logger.info(f"💾 Mode: FP16 + Turkish Medical LoRA")
logger.info(f"🔧 Compiler: {os.environ.get('CC', 'Not Set')}")
logger.info(f"⚡ Attention: Eager (stable)")
if HF_TOKEN:
logger.info("✅ HF Token found")
else:
logger.info("ℹ️ No HF Token")
setup_cache_directories()
clear_cache_locks()
setup_l4_optimization()
# Start model loading
asyncio.create_task(load_model())
@app.get("/", response_model=HealthResponse)
async def root():
return HealthResponse(
status="healthy" if model_loaded else "loading",
model_loaded=model_loaded,
gpu_available=torch.cuda.is_available(),
error=loading_error
)
@app.get("/health", response_model=HealthResponse)
async def health_check():
return HealthResponse(
status="healthy" if (model_loaded and lora_loaded) else "degraded" if model_loaded else "loading",
model_loaded=model_loaded,
gpu_available=torch.cuda.is_available(),
error=loading_error
)
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
"""Turkish medical chat endpoint"""
try:
messages = request.conversation_history or []
messages.append(Message(role="user", content=request.message))
result = await generate_response(
messages,
request.max_tokens,
request.temperature
)
return ChatResponse(
response=result["response"],
generation_time=result["generation_time"],
tokens_generated=result["tokens_generated"],
conversation_turn=result["conversation_turn"]
)
except Exception as e:
logger.error(f"Chat error: {e}")
raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}")
@app.post("/conversation", response_model=ChatResponse)
async def conversation_endpoint(request: ConversationRequest):
"""Turkish medical conversation endpoint"""
try:
result = await generate_response(
request.messages,
request.max_tokens,
request.temperature
)
return ChatResponse(
response=result["response"],
generation_time=result["generation_time"],
tokens_generated=result["tokens_generated"],
conversation_turn=result["conversation_turn"]
)
except Exception as e:
logger.error(f"Conversation error: {e}")
raise HTTPException(status_code=500, detail=f"Conversation failed: {str(e)}")
@app.get("/test")
async def test_endpoint():
"""Turkish medical test"""
if not model_loaded:
return {
"status": "model_not_ready",
"message": "Model is still loading...",
"error": loading_error
}
try:
test_messages = [
Message(role="user", content="Merhaba doktor, 2 gündür başım ağrıyor ve ateşim var.")
]
result = await generate_response(test_messages, 150, 0.7)
return {
"status": "success",
"test_input": test_messages[0].content,
"test_output": result["response"],
"generation_time": result["generation_time"],
"device_info": device,
"lora_active": result.get("lora_active", False),
"model_type": "Turkish Medical LoRA" if lora_loaded else "Base Llama (NO MEDICAL TRAINING)"
}
except Exception as e:
logger.error(f"Test error: {e}")
return {
"status": "error",
"message": f"Test failed: {str(e)}"
}
@app.get("/memory-status")
async def memory_status():
"""Get GPU memory status"""
memory_info = {"gpu_available": torch.cuda.is_available()}
if torch.cuda.is_available():
props = torch.cuda.get_device_properties(0)
total_memory = props.total_memory / (1024**3)
allocated = torch.cuda.memory_allocated(0) / (1024**3)
reserved = torch.cuda.memory_reserved(0) / (1024**3)
free = total_memory - allocated
memory_info.update({
"gpu_name": props.name,
"total_memory_gb": round(total_memory, 2),
"allocated_memory_gb": round(allocated, 2),
"reserved_memory_gb": round(reserved, 2),
"free_memory_gb": round(free, 2),
"utilization_percent": round((allocated / total_memory) * 100, 1)
})
return memory_info
@app.get("/debug")
async def debug_info():
"""Enhanced debug information"""
model_device_info = {}
if model:
try:
devices = set()
for param in model.parameters():
devices.add(str(param.device))
break
model_device_info = {
"model_devices": list(devices),
"device_consistent": len(devices) == 1,
"first_param_device": str(next(model.parameters()).device)
}
except:
model_device_info = {"error": "Could not get model device info"}
memory_info = await memory_status()
return {
"model_status": {
"model_loaded": model_loaded,
"lora_loaded": lora_loaded,
"loading_error": loading_error,
"model_type": type(model).__name__ if model else None,
**model_device_info
},
"system_info": {
"target_device": device,
"gpu_available": torch.cuda.is_available(),
"torch_version": torch.__version__,
"cuda_version": torch.version.cuda if torch.cuda.is_available() else None,
"compiler": os.environ.get("CC", "Not Set")
},
"memory_info": memory_info,
"optimization_info": {
"precision": "FP16",
"quantization": "None",
"flash_attention": "Disabled (stable build)",
"tf32": "Enabled",
"lora_status": "Loaded" if lora_loaded else "FAILED - NO MEDICAL TRAINING",
"medical_fine_tuning": "Active" if lora_loaded else "MISSING"
},
"cache_info": {
"hf_cache": CACHE_DIR,
"cache_exists": os.path.exists(CACHE_DIR),
"cache_writable": os.access(CACHE_DIR, os.W_OK) if os.path.exists(CACHE_DIR) else False
}
}
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)