Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Define constants | |
MODEL_NAME = "Ct1tz/Codebert-Base-B2D4G5" | |
MAX_LENGTH = 512 | |
# Load the tokenizer with error handling | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, model_max_length=MAX_LENGTH, trust_remote_code=True) | |
print(f"Tokenizer vocabulary size: {len(tokenizer)}") | |
print(f"Tokenizer type: {tokenizer.__class__.__name__}") | |
except Exception as e: | |
print(f"Error loading tokenizer: {e}") | |
raise | |
# Load the model with error handling | |
try: | |
# Load the model (using AutoModelForCausalLM for chat/generation tasks) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
trust_remote_code=True | |
) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise | |
# Define a chat function | |
def chat(input_text, history=[]): | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=MAX_LENGTH) | |
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
history.append((input_text, response)) | |
return history, history | |
# Create Gradio chat interface | |
interface = gr.ChatInterface( | |
fn=chat, | |
title="CodeBERT Chat", | |
description="Chat with the CodeBERT model (Ct1tz/Codebert-Base-B2D4G5) for code-related tasks.", | |
theme="soft" | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
interface.launch() |