qqwjq1981's picture
Update app.py
a12a54f verified
import numpy as np
import cvxpy as cp
import re
import copy
import concurrent.futures
import gradio as gr
from datetime import datetime
import random
import moviepy
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy.editor import (
ImageClip,
VideoFileClip,
TextClip,
CompositeVideoClip,
CompositeAudioClip,
AudioFileClip,
concatenate_videoclips,
concatenate_audioclips
)
from PIL import Image, ImageDraw, ImageFont
from moviepy.audio.AudioClip import AudioArrayClip
import subprocess
import json
import logging
import whisperx
import time
import os
import openai
from openai import OpenAI
import traceback
from TTS.api import TTS
import torch
from pydub import AudioSegment
from pyannote.audio import Pipeline
import wave
import librosa
import noisereduce as nr
import soundfile as sf
from paddleocr import PaddleOCR
import cv2
from rapidfuzz import fuzz
from tqdm import tqdm
import threading
logger = logging.getLogger(__name__)
# Configure logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
logger.info(f"MoviePy Version: {moviepy.__version__}")
# Accept license terms for Coqui XTTS
os.environ["COQUI_TOS_AGREED"] = "1"
# torch.serialization.add_safe_globals([XttsConfig])
logger.info(gr.__version__)
client = OpenAI(
api_key= os.environ.get("openAI_api_key"), # This is the default and can be omitted
)
hf_api_key = os.environ.get("hf_token")
def silence(duration, fps=44100):
"""
Returns a silent AudioClip of the specified duration.
"""
return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)
def count_words_or_characters(text):
# Count non-Chinese words
non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
# Count Chinese characters
chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
return non_chinese_words + chinese_chars
# Define the passcode
PASSCODE = "show_feedback_db"
css = """
/* Adjust row height */
.dataframe-container tr {
height: 50px !important;
}
/* Ensure text wrapping and prevent overflow */
.dataframe-container td {
white-space: normal !important;
word-break: break-word !important;
}
/* Set column widths */
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
width: 6%; /* Start column */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
width: 47%; /* Original text */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
width: 47%; /* Translated text */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
display: none !important;
}
"""
# Function to save feedback or provide access to the database file
def handle_feedback(feedback):
feedback = feedback.strip() # Clean up leading/trailing whitespace
if not feedback:
return "Feedback cannot be empty.", None
if feedback == PASSCODE:
# Provide access to the feedback.db file
return "Access granted! Download the database file below.", "feedback.db"
else:
# Save feedback to the database
with sqlite3.connect("feedback.db") as conn:
cursor = conn.cursor()
cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
conn.commit()
return "Thank you for your feedback!", None
def segment_background_audio(audio_path, background_audio_path="background_segments.wav", speech_audio_path="speech_segment.wav"):
"""
Uses Demucs to separate audio and extract background (non-vocal) parts.
Merges drums, bass, and other stems into a single background track.
"""
# Step 1: Run Demucs using the 4-stem model
subprocess.run([
"demucs",
"-n", "htdemucs", # 4-stem model
audio_path
], check=True)
# Step 2: Locate separated stem files
filename = os.path.splitext(os.path.basename(audio_path))[0]
stem_dir = os.path.join("separated", "htdemucs", filename)
# Step 3: Load and merge background stems
vocals = AudioSegment.from_wav(os.path.join(stem_dir, "vocals.wav"))
drums = AudioSegment.from_wav(os.path.join(stem_dir, "drums.wav"))
bass = AudioSegment.from_wav(os.path.join(stem_dir, "bass.wav"))
other = AudioSegment.from_wav(os.path.join(stem_dir, "other.wav"))
background = drums.overlay(bass).overlay(other)
# Step 4: Export the merged background
background.export(background_audio_path, format="wav")
vocals.export(speech_audio_path, format="wav")
return background_audio_path, speech_audio_path
def transcribe_video_with_speakers(video_path):
# Extract audio from video
video = VideoFileClip(video_path)
audio_path = "audio.wav"
video.audio.write_audiofile(audio_path)
logger.info(f"Audio extracted from video: {audio_path}")
segment_result, speech_audio_path = segment_background_audio(audio_path)
print(f"Saved non-speech (background) audio to local")
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
try:
# Load a medium model with float32 for broader compatibility
model = whisperx.load_model("large-v3", device=device, compute_type="float32")
logger.info("WhisperX model loaded")
# Transcribe
result = model.transcribe(speech_audio_path, chunk_size=4, print_progress = True)
logger.info("Audio transcription completed")
# Get the detected language
detected_language = result["language"]
logger.debug(f"Detected language: {detected_language}")
# Alignment
# model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
# result = whisperx.align(result["segments"], model_a, metadata, speech_audio_path, device)
# logger.info("Transcription alignment completed")
# Diarization (works independently of Whisper model size)
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
diarize_segments = diarize_model(speech_audio_path)
logger.info("Speaker diarization completed")
# Assign speakers
result = whisperx.assign_word_speakers(diarize_segments, result)
logger.info("Speakers assigned to transcribed segments")
except Exception as e:
logger.error(f"❌ WhisperX pipeline failed: {e}")
# Extract timestamps, text, and speaker IDs
transcript_with_speakers = [
{
"start": segment["start"],
"end": segment["end"],
"text": segment["text"],
"speaker": segment.get("speaker", "SPEAKER_00")
}
for segment in result["segments"]
]
# Collect audio for each speaker
speaker_audio = {}
logger.info("🔎 Start collecting valid audio segments per speaker...")
for idx, segment in enumerate(result["segments"]):
speaker = segment.get("speaker", "SPEAKER_00")
start = segment["start"]
end = segment["end"]
if end > start and (end - start) > 0.05: # Require >50ms duration
if speaker not in speaker_audio:
speaker_audio[speaker] = [(start, end)]
else:
speaker_audio[speaker].append((start, end))
logger.debug(f"Segment {idx}: Added to speaker {speaker} [{start:.2f}s → {end:.2f}s]")
else:
logger.warning(f"⚠️ Segment {idx} discarded: invalid duration ({start:.2f}s → {end:.2f}s)")
# Collapse and truncate speaker audio
speaker_sample_paths = {}
audio_clip = AudioFileClip(speech_audio_path)
logger.info(f"🔎 Found {len(speaker_audio)} speakers with valid segments. Start creating speaker samples...")
for speaker, segments in speaker_audio.items():
logger.info(f"🔹 Speaker {speaker}: {len(segments)} valid segments")
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
if not speaker_clips:
logger.warning(f"⚠️ No valid audio clips for speaker {speaker}. Skipping sample creation.")
continue
if len(speaker_clips) == 1:
logger.debug(f"Speaker {speaker}: Only one clip, skipping concatenation.")
combined_clip = speaker_clips[0]
else:
logger.debug(f"Speaker {speaker}: Concatenating {len(speaker_clips)} clips.")
combined_clip = concatenate_audioclips(speaker_clips)
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
logger.debug(f"Speaker {speaker}: Truncated to {truncated_clip.duration:.2f} seconds.")
# Step 4: Save the final result
sample_path = f"speaker_{speaker}_sample.wav"
truncated_clip.write_audiofile(sample_path)
speaker_sample_paths[speaker] = sample_path
logger.info(f"✅ Created and saved sample for {speaker}: {sample_path}")
# Cleanup
logger.info("🧹 Closing audio clip and removing temporary files...")
video.close()
audio_clip.close()
os.remove(speech_audio_path)
logger.info("✅ Finished processing all speaker samples.")
return transcript_with_speakers, detected_language
# Function to get the appropriate translation model based on target language
# def get_translation_model(source_language, target_language):
# """
# Get the translation model based on the source and target language.
# Parameters:
# - target_language (str): The language to translate the content into (e.g., 'es', 'fr').
# - source_language (str): The language of the input content (default is 'en' for English).
# Returns:
# - str: The translation model identifier.
# """
# # List of allowable languages
# allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru", "hi", "tr"]
# # Validate source and target languages
# if source_language not in allowable_languages:
# logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
# # Return a default model if source language is invalid
# source_language = "en" # Default to 'en'
# if target_language not in allowable_languages:
# logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
# # Return a default model if target language is invalid
# target_language = "zh" # Default to 'zh'
# if source_language == target_language:
# source_language = "en" # Default to 'en'
# target_language = "zh" # Default to 'zh'
# # Return the model using string concatenation
# return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
# def translate_single_entry(entry, translator):
# original_text = entry["text"]
# translated_text = translator(original_text)[0]['translation_text']
# return {
# "start": entry["start"],
# "original": original_text,
# "translated": translated_text,
# "end": entry["end"],
# "speaker": entry["speaker"]
# }
# def translate_text(transcription_json, source_language, target_language):
# # Load the translation model for the specified target language
# translation_model_id = get_translation_model(source_language, target_language)
# logger.debug(f"Translation model: {translation_model_id}")
# translator = pipeline("translation", model=translation_model_id)
# # Use ThreadPoolExecutor to parallelize translations
# with concurrent.futures.ThreadPoolExecutor() as executor:
# # Submit all translation tasks and collect results
# translate_func = lambda entry: translate_single_entry(entry, translator)
# translated_json = list(executor.map(translate_func, transcription_json))
# # Sort the translated_json by start time
# translated_json.sort(key=lambda x: x["start"])
# # Log the components being added to translated_json
# for entry in translated_json:
# logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s, speaker=%s",
# entry["start"], entry["original"], entry["translated"], entry["end"], entry["speaker"])
# return translated_json
def update_translations(file, edited_table, source_language, target_language, process_mode):
"""
Update the translations based on user edits in the Gradio Dataframe.
"""
output_video_path = "output_video.mp4"
logger.debug(f"Editable Table: {edited_table}")
if file is None:
logger.info("No file uploaded. Please upload a video/audio file.")
return None, [], None, "No file uploaded. Please upload a video/audio file."
try:
start_time = time.time() # Start the timer
# Convert the edited_table (list of lists) back to list of dictionaries
updated_translations = [
{
"start": row["start"], # Access by column name
"original": row["original"],
"translated": row["translated"],
"end": row["end"]
}
for _, row in edited_table.iterrows()
]
translated_json = apply_adaptive_speed(updated_translations, source_language, target_language)
# Call the function to process the video with updated translations
add_transcript_voiceover(file.name, translated_json, output_video_path, process_mode)
# Calculate elapsed time
elapsed_time = time.time() - start_time
elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
return output_video_path, elapsed_time_display
except Exception as e:
raise ValueError(f"Error updating translations: {e}")
def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
try:
subtitle_width = int(video_width * 0.8)
aspect_ratio = video_height / video_width
subtitle_font_size = int(video_width // 22 if aspect_ratio > 1.2 else video_height // 24)
font = ImageFont.truetype(font_path, subtitle_font_size)
dummy_img = Image.new("RGBA", (subtitle_width, 1), (0, 0, 0, 0))
draw = ImageDraw.Draw(dummy_img)
# Word wrapping
lines = []
line = ""
for word in text.split():
test_line = f"{line} {word}".strip()
bbox = draw.textbbox((0, 0), test_line, font=font)
w = bbox[2] - bbox[0]
if w <= subtitle_width - 10:
line = test_line
else:
lines.append(line)
line = word
lines.append(line)
outline_width=2
line_heights = [draw.textbbox((0, 0), l, font=font)[3] - draw.textbbox((0, 0), l, font=font)[1] for l in lines]
total_height = sum(line_heights) + (len(lines) - 1) * 5 + 6 * outline_width
img = Image.new("RGBA", (subtitle_width, total_height), (0, 0, 0, 0))
draw = ImageDraw.Draw(img)
def draw_text_with_outline(draw, pos, text, font, fill="yellow", outline="black", outline_width = outline_width):
x, y = pos
# Draw outline
for dx in range(-outline_width, outline_width + 1):
for dy in range(-outline_width, outline_width + 1):
if dx != 0 or dy != 0:
draw.text((x + dx, y + dy), text, font=font, fill=outline)
# Draw main text
draw.text((x, y), text, font=font, fill=fill)
y = 0
for idx, line in enumerate(lines):
bbox = draw.textbbox((0, 0), line, font=font)
w = bbox[2] - bbox[0]
x = (subtitle_width - w) // 2
draw_text_with_outline(draw, (x, y), line, font)
y += line_heights[idx] + 5
img_np = np.array(img)
margin = int(video_height * 0.05)
img_clip = ImageClip(img_np) # Create the ImageClip first
image_height = img_clip.size[1]
txt_clip = (
img_clip # Use the already created clip
.set_start(start_time)
.set_duration(end_time - start_time)
.set_position(("center", video_height - image_height - margin))
.set_opacity(0.9)
)
return txt_clip
except Exception as e:
logger.error(f"❌ Failed to create subtitle clip: {e}")
return None
def solve_optimal_alignment(original_segments, generated_durations, total_duration):
"""
Aligns speech segments using quadratic programming. If optimization fails,
applies greedy fallback: center shorter segments, stretch longer ones.
Logs alignment results for traceability.
"""
N = len(original_segments)
d = np.array(generated_durations)
m = np.array([(seg['start'] + seg['end']) / 2 for seg in original_segments])
if N == 0 or len(generated_durations) == 0:
logger.warning("⚠️ Alignment skipped: empty segments or durations.")
return original_segments # or raise an error, depending on your app logic
try:
s = cp.Variable(N)
objective = cp.Minimize(cp.sum_squares(s + d / 2 - m))
constraints = [s[0] >= 0]
for i in range(N - 1):
constraints.append(s[i] + d[i] <= s[i + 1])
constraints.append(s[N - 1] + d[N - 1] <= total_duration)
problem = cp.Problem(objective, constraints)
problem.solve()
if s.value is None:
raise ValueError("Solver failed")
for i in range(N):
original_segments[i]['start'] = round(s.value[i], 3)
original_segments[i]['end'] = round(s.value[i] + d[i], 3)
logger.info(
f"[OPT] Segment {i}: duration={d[i]:.2f}s | start={original_segments[i]['start']:.2f}s | "
f"end={original_segments[i]['end']:.2f}s | mid={m[i]:.2f}s"
)
except Exception as e:
logger.warning(f"⚠️ Optimization failed: {e}, falling back to greedy alignment.")
for i in range(N):
orig_start = original_segments[i]['start']
orig_end = original_segments[i]['end']
orig_mid = (orig_start + orig_end) / 2
gen_duration = generated_durations[i]
orig_duration = orig_end - orig_start
if gen_duration <= orig_duration:
new_start = orig_mid - gen_duration / 2
new_end = orig_mid + gen_duration / 2
else:
extra = (gen_duration - orig_duration) / 2
new_start = orig_start - extra
new_end = orig_end + extra
if i > 0:
prev_end = original_segments[i - 1]['end']
new_start = max(new_start, prev_end + 0.01)
if i < N - 1:
next_start = original_segments[i + 1]['start']
new_end = min(new_end, next_start - 0.01)
if new_end <= new_start:
new_start = orig_start
new_end = orig_start + gen_duration
original_segments[i]['start'] = round(new_start, 3)
original_segments[i]['end'] = round(new_end, 3)
logger.info(
f"[FALLBACK] Segment {i}: duration={gen_duration:.2f}s | start={new_start:.2f}s | "
f"end={new_end:.2f}s | original_mid={orig_mid:.2f}s"
)
return original_segments
# ocr_model = None
# ocr_lock = threading.Lock()
# def init_ocr_model():
# global ocr_model
# with ocr_lock:
# if ocr_model is None:
# ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")
# def find_best_subtitle_region(frame, ocr_model, region_height_ratio=0.35, num_strips=5, min_conf=0.5):
# """
# Automatically identifies the best subtitle region in a video frame using OCR confidence.
# Parameters:
# - frame: full video frame (BGR np.ndarray)
# - ocr_model: a loaded PaddleOCR model
# - region_height_ratio: portion of image height to scan (from bottom up)
# - num_strips: how many horizontal strips to evaluate
# - min_conf: minimum average confidence to consider a region valid
# Returns:
# - crop_region: the cropped image region with highest OCR confidence
# - region_box: (y_start, y_end) of the region in the original frame
# """
# height, width, _ = frame.shape
# region_height = int(height * region_height_ratio)
# base_y_start = height - region_height
# strip_height = region_height // num_strips
# best_score = -1
# best_crop = None
# best_bounds = (0, height)
# for i in range(num_strips):
# y_start = base_y_start + i * strip_height
# y_end = y_start + strip_height
# strip = frame[y_start:y_end, :]
# try:
# result = ocr_model.ocr(strip, cls=True)
# if not result or not result[0]:
# continue
# total_score = sum(line[1][1] for line in result[0])
# avg_score = total_score / len(result[0])
# if avg_score > best_score:
# best_score = avg_score
# best_crop = strip
# best_bounds = (y_start, y_end)
# except Exception as e:
# continue # Fail silently on OCR issues
# if best_score >= min_conf and best_crop is not None:
# return best_crop, best_bounds
# else:
# # Fallback to center-bottom strip
# fallback_y = height - int(height * 0.2)
# return frame[fallback_y:, :], (fallback_y, height)
# def ocr_frame_worker(args, min_confidence=0.7):
# frame_idx, frame_time, frame = args
# init_ocr_model() # Load model in thread-safe way
# if frame is None or frame.size == 0 or not isinstance(frame, np.ndarray):
# return {"time": frame_time, "text": ""}
# if frame.dtype != np.uint8:
# frame = frame.astype(np.uint8)
# try:
# result = ocr_model.ocr(frame, cls=True)
# lines = result[0] if result else []
# texts = [line[1][0] for line in lines if line[1][1] >= min_confidence]
# combined_text = " ".join(texts).strip()
# return {"time": frame_time, "text": combined_text}
# except Exception as e:
# print(f"⚠️ OCR failed at {frame_time:.2f}s: {e}")
# return {"time": frame_time, "text": ""}
# def frame_is_in_audio_segments(frame_time, audio_segments, tolerance=0.2):
# for segment in audio_segments:
# start, end = segment["start"], segment["end"]
# if (start - tolerance) <= frame_time <= (end + tolerance):
# return True
# return False
# def extract_ocr_subtitles_parallel(video_path, transcription_json, interval_sec=0.5, num_workers=4):
# cap = cv2.VideoCapture(video_path)
# fps = cap.get(cv2.CAP_PROP_FPS)
# frames = []
# frame_idx = 0
# success, frame = cap.read()
# while success:
# if frame_idx % int(fps * interval_sec) == 0:
# frame_time = frame_idx / fps
# if frame_is_in_audio_segments(frame_time, transcription_json):
# frames.append((frame_idx, frame_time, frame.copy()))
# success, frame = cap.read()
# frame_idx += 1
# cap.release()
# ocr_results = []
# ocr_failures = 0 # Count OCR failures
# with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
# futures = [executor.submit(ocr_frame_worker, frame) for frame in frames]
# for f in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
# try:
# result = f.result()
# if result["text"]:
# ocr_results.append(result)
# except Exception as e:
# ocr_failures += 1
# logger.info(f"✅ OCR extraction completed: {len(ocr_results)} frames successful, {ocr_failures} frames failed.")
# return ocr_results
# def collapse_ocr_subtitles(ocr_json, text_similarity_threshold=90):
# collapsed = []
# current = None
# for entry in ocr_json:
# time = entry["time"]
# text = entry["text"]
# if not current:
# current = {"start": time, "end": time, "text": text}
# continue
# sim = fuzz.ratio(current["text"], text)
# if sim >= text_similarity_threshold:
# current["end"] = time
# logger.debug(f"MERGED: Current end extended to {time:.2f}s for text: '{current['text'][:50]}...' (Similarity: {sim})")
# else:
# logger.debug(f"NOT MERGING (Similarity: {sim} < Threshold: {text_similarity_threshold}):")
# logger.debug(f" Previous segment: {current['start']:.2f}s - {current['end']:.2f}s: '{current['text'][:50]}...'")
# logger.debug(f" New segment: {time:.2f}s: '{text[:50]}...'")
# collapsed.append(current)
# current = {"start": time, "end": time, "text": text}
# if current:
# collapsed.append(current)
# logger.info(f"✅ OCR subtitles collapsed into {len(collapsed)} segments.")
# for idx, seg in enumerate(collapsed):
# logger.debug(f"[OCR Collapsed {idx}] {seg['start']:.2f}s - {seg['end']:.2f}s: {seg['text'][:50]}...")
# return collapsed
# def merge_speaker_and_time_from_whisperx(
# ocr_json,
# whisperx_json,
# replace_threshold=90,
# time_tolerance=1.0
# ):
# merged = []
# used_whisperx = set()
# whisperx_used_flags = [False] * len(whisperx_json)
# # Step 1: Attempt to match each OCR entry to a WhisperX entry
# for ocr in ocr_json:
# ocr_start, ocr_end = ocr["start"], ocr["end"]
# ocr_text = ocr["text"]
# best_match = None
# best_score = -1
# best_idx = None
# for idx, wx in enumerate(whisperx_json):
# wx_start, wx_end = wx["start"], wx["end"]
# wx_text = wx["text"]
# # Check for time overlap
# overlap = not (ocr_end < wx_start - time_tolerance or ocr_start > wx_end + time_tolerance)
# if not overlap:
# continue
# sim = fuzz.ratio(ocr_text, wx_text)
# if sim > best_score:
# best_score = sim
# best_match = wx
# best_idx = idx
# if best_match and best_score >= replace_threshold:
# # Replace WhisperX segment with higher quality OCR text
# new_segment = copy.deepcopy(best_match)
# new_segment["text"] = ocr_text
# new_segment["ocr_replaced"] = True
# new_segment["ocr_similarity"] = best_score
# whisperx_used_flags[best_idx] = True
# merged.append(new_segment)
# else:
# # No replacement, check if this OCR is outside WhisperX time coverage
# covered = any(
# abs((ocr_start + ocr_end)/2 - (wx["start"] + wx["end"])/2) < time_tolerance
# for wx in whisperx_json
# )
# if not covered:
# new_segment = copy.deepcopy(ocr)
# new_segment["ocr_added"] = True
# new_segment["speaker"] = "UNKNOWN"
# merged.append(new_segment)
# # Step 2: Add untouched WhisperX segments
# for idx, wx in enumerate(whisperx_json):
# if not whisperx_used_flags[idx]:
# merged.append(wx)
# # Step 3: Sort all merged segments
# merged = sorted(merged, key=lambda x: x["start"])
# return merged
# --- Function Definitions ---
def process_segment_with_gpt(segment, source_lang, target_lang, model="gpt-4", openai_client=None):
"""
Processes a single text segment: restores punctuation and translates using an OpenAI GPT model.
"""
if openai_client is None:
segment_identifier = f"{segment.get('start', 'N/A')}-{segment.get('end', 'N/A')}"
logger.error(f"❌ OpenAI client was not provided for segment {segment_identifier}. Cannot process.")
return {
"start": segment.get("start"),
"end": segment.get("end"),
"speaker": segment.get("speaker", "SPEAKER_00"),
"original": segment["text"],
"translated": "[ERROR: OpenAI client not provided]"
}
original_text = segment["text"]
segment_id = f"{segment['start']}-{segment['end']}" # Create a unique ID for this segment for easier log tracking
logger.debug(
f"Starting processing for segment {segment_id}. "
f"Original text preview: '{original_text[:100]}{'...' if len(original_text) > 100 else ''}'"
)
prompt = (
f"You are a multilingual assistant. Given the following text in {source_lang}, "
f"1) restore punctuation, and 2) translate it into {target_lang}.\n\n"
f"Text:\n{original_text}\n\n"
f"Return in JSON format:\n"
f'{{"punctuated": "...", "translated": "..."}}'
)
try:
logger.debug(f"Sending request to OpenAI model '{model}' for segment {segment_id}...")
response = openai_client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
content = response.choices[0].message.content.strip()
# --- NEW LOGIC: Clean markdown code block fences from the response ---
cleaned_content = content
if content.startswith("```") and content.endswith("```"):
# Attempt to find the actual JSON object within the markdown fence
json_start_index = content.find('{')
json_end_index = content.rfind('}')
if json_start_index != -1 and json_end_index != -1 and json_end_index > json_start_index:
cleaned_content = content[json_start_index : json_end_index + 1]
logger.debug(f"Removed markdown fences for segment {segment_id}. Extracted JSON portion.")
else:
logger.warning(
f"⚠️ Content starts/ends with '```' but a valid JSON object ({{...}}) was not found within "
f"fences for segment {segment_id}. Attempting to parse raw content. Raw content: '{content}'"
)
# --- END NEW LOGIC ---
logger.debug(
f"Attempting to parse JSON for segment {segment_id}. "
f"Content for parsing preview: '{cleaned_content[:200]}{'...' if len(cleaned_content) > 200 else ''}'"
)
result_json = {}
try:
result_json = json.loads(cleaned_content)
except json.JSONDecodeError as e:
logger.warning(
f"⚠️ Failed to parse JSON response for segment {segment_id}. Error: {e}. "
f"Content attempted to parse: '{cleaned_content}'" # Log cleaned content here
)
punctuated_text = original_text
translated_text = "" # Return empty translated text on parsing failure
else:
punctuated_text = result_json.get("punctuated", original_text)
translated_text = result_json.get("translated", "")
logger.info(
f"✅ Successfully processed segment {segment_id}. "
f"Punctuated preview: '{punctuated_text[:50]}{'...' if len(punctuated_text) > 50 else ''}', "
f"Translated preview: '{translated_text[:50]}{'...' if len(translated_text) > 50 else ''}'"
)
return {
"start": segment["start"],
"end": segment["end"],
"speaker": segment.get("speaker", "SPEAKER_00"),
"original": punctuated_text,
"translated": translated_text
}
except Exception as e:
logger.error(
f"❌ An unexpected error occurred for segment {segment_id}: {e}",
exc_info=True # This logs the full traceback
)
return {
"start": segment["start"],
"end": segment["end"],
"speaker": segment.get("speaker", "SPEAKER_00"),
"original": original_text,
"translated": "[ERROR: Processing failed]"
}
def punctuate_and_translate_parallel(transcription_json, source_lang="zh", target_lang="en", model="gpt-4o", max_workers=5, openai_client=None):
"""
Orchestrates parallel punctuation restoration and translation of multiple segments
using a ThreadPoolExecutor.
"""
if not transcription_json:
logger.warning("No segments provided in transcription_json for parallel processing. Returning an empty list.")
return []
logger.info(f"Starting parallel punctuation and translation for {len(transcription_json)} segments.")
logger.info(
f"Configuration: Model='{model}', Source Language='{source_lang}', "
f"Target Language='{target_lang}', Max Workers={max_workers}."
)
results = []
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit each segment for processing, ensuring the openai_client is passed to each worker
futures = {
executor.submit(process_segment_with_gpt, seg, source_lang, target_lang, model, openai_client): seg
for seg in transcription_json
}
logger.info(f"All {len(futures)} segments have been submitted to the thread pool.")
# Asynchronously collect results as they complete
for i, future in enumerate(concurrent.futures.as_completed(futures)):
segment = futures[future] # Retrieve the original segment data for logging context
segment_id = f"{segment['start']}-{segment['end']}"
try:
result = future.result() # This will re-raise any exception from the worker thread
results.append(result)
logger.debug(f"Collected result for segment {segment_id}. ({i + 1}/{len(futures)} completed)")
except Exception as exc:
# This catch block is for rare cases where the future itself fails to yield a result,
# or an exception was not caught within `process_segment_with_gpt`.
logger.error(
f"Unhandled exception encountered while retrieving result for segment {segment_id}: {exc}",
exc_info=True
)
# Ensure a placeholder result is added even if future retrieval fails
results.append({
"start": segment.get("start"),
"end": segment.get("end"),
"speaker": segment.get("speaker", "SPEAKER_00"),
"original": segment["text"],
"translated": "[ERROR: Unhandled exception in parallel processing]"
})
logger.info("🎉 Parallel processing complete. All results collected.")
return results
# def merge_speaker_and_time_from_whisperx(ocr_json, whisperx_json, text_sim_threshold=80, replace_threshold=90):
# merged = []
# used_whisperx = set()
# for ocr in ocr_json:
# ocr_start = ocr["start"]
# ocr_end = ocr["end"]
# ocr_text = ocr["text"]
# best_match = None
# best_score = -1
# best_idx = None
# for idx, wx in enumerate(whisperx_json):
# wx_start, wx_end = wx["start"], wx["end"]
# wx_text = wx["text"]
# if idx in used_whisperx:
# continue # Already matched
# time_center_diff = abs((ocr_start + ocr_end)/2 - (wx_start + wx_end)/2)
# if time_center_diff > 3:
# continue
# sim = fuzz.ratio(ocr_text, wx_text)
# if sim > best_score:
# best_score = sim
# best_match = wx
# best_idx = idx
# new_entry = copy.deepcopy(ocr)
# if best_match:
# new_entry["speaker"] = best_match.get("speaker", "UNKNOWN")
# new_entry["ocr_similarity"] = best_score
# if best_score >= replace_threshold:
# new_entry["start"] = best_match["start"]
# new_entry["end"] = best_match["end"]
# used_whisperx.add(best_idx) # Mark used
# else:
# new_entry["speaker"] = "UNKNOWN"
# new_entry["ocr_similarity"] = None
# merged.append(new_entry)
# return merged
def realign_ocr_segments(merged_ocr_json, min_gap=0.2):
"""
Realign OCR segments to avoid overlaps using midpoint-based adjustment.
"""
merged_ocr_json = sorted(merged_ocr_json, key=lambda x: x["start"])
for i in range(1, len(merged_ocr_json)):
prev = merged_ocr_json[i - 1]
curr = merged_ocr_json[i]
# If current overlaps with previous, adjust
if curr["start"] < prev["end"] + min_gap:
midpoint = (prev["end"] + curr["start"]) / 2
prev["end"] = round(midpoint - min_gap / 2, 3)
curr["start"] = round(midpoint + min_gap / 2, 3)
# Prevent negative durations
if curr["start"] >= curr["end"]:
curr["end"] = round(curr["start"] + 0.3, 3)
return merged_ocr_json
def post_edit_transcribed_segments(transcription_json, video_path,
interval_sec=0.5,
text_similarity_threshold=80,
time_tolerance=1.0,
num_workers=4):
"""
Given WhisperX transcription (transcription_json) and video,
use OCR subtitles to post-correct and safely insert missing captions.
"""
# Step 1: Extract OCR subtitles (only near audio segments)
ocr_json = extract_ocr_subtitles_parallel(
video_path,
transcription_json,
interval_sec=interval_sec,
num_workers=num_workers
)
# Step 2: Collapse repetitive OCR
collapsed_ocr = collapse_ocr_subtitles(ocr_json, text_similarity_threshold=90)
# Step 3: Merge and realign OCR segments.
ocr_merged = merge_speaker_and_time_from_whisperx(collapsed_ocr, transcription_json)
ocr_realigned = realign_ocr_segments(ocr_merged)
logger.info(f"✅ Final merged and realigned OCR: {len(ocr_realigned)} segments")
return ocr_realigned
def process_entry(entry, i, tts_model, video_width, video_height, process_mode, target_language, font_path, speaker_sample_paths=None):
logger.debug(f"Processing entry {i}: {entry}")
error_message = None
try:
txt_clip = create_subtitle_clip_pil(entry["translated"], entry["start"], entry["end"], video_width, video_height, font_path)
except Exception as e:
error_message = f"❌ Failed to create subtitle clip for entry {i}: {e}"
logger.error(error_message)
txt_clip = None
audio_segment = None
actual_duration = 0.0
if process_mode > 1:
try:
segment_audio_path = f"segment_{i}_voiceover.wav"
desired_duration = entry["end"] - entry["start"]
desired_speed = entry['speed'] #calibrated_speed(entry['translated'], desired_duration)
speaker = entry.get("speaker", "SPEAKER_00")
speaker_wav_path = f"speaker_{speaker}_sample.wav"
if process_mode > 2 and speaker_wav_path and os.path.exists(speaker_wav_path) and target_language in tts_model.synthesizer.tts_model.language_manager.name_to_id.keys():
generate_voiceover_clone(entry['translated'], tts_model, desired_speed, target_language, speaker_wav_path, segment_audio_path)
else:
generate_voiceover_OpenAI(entry['translated'], target_language, desired_speed, segment_audio_path)
if not segment_audio_path or not os.path.exists(segment_audio_path):
raise FileNotFoundError(f"Voiceover file not generated at: {segment_audio_path}")
audio_clip = AudioFileClip(segment_audio_path)
actual_duration = audio_clip.duration
audio_segment = audio_clip # Do not set start here, alignment happens later
except Exception as e:
err = f"❌ Failed to generate audio segment for entry {i}: {e}"
logger.error(err)
error_message = error_message + " | " + err if error_message else err
audio_segment = None
return i, txt_clip, audio_segment, actual_duration, error_message
def add_transcript_voiceover(video_path, translated_json, output_path, process_mode, target_language="en", speaker_sample_paths=None, background_audio_path="background_segments.wav"):
video = VideoFileClip(video_path)
font_path = "./NotoSansSC-Regular.ttf"
text_clips = []
audio_segments = []
actual_durations = []
error_messages = []
if process_mode > 2:
global tts_model
if tts_model is None:
try:
print("🔄 Loading XTTS model...")
from TTS.api import TTS
tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts")
print("✅ XTTS model loaded successfully.")
except Exception as e:
print("❌ Error loading XTTS model:")
traceback.print_exc()
return f"Error loading XTTS model: {e}"
with concurrent.futures.ThreadPoolExecutor() as executor:
# futures = [executor.submit(process_entry, entry, i, tts_model, video.w, video.h, process_mode, target_language, font_path, speaker_sample_paths)
# # for i, entry in enumerate(translated_json)]
# results = []
# for future in concurrent.futures.as_completed(futures):
# try:
# i, txt_clip, audio_segment, actual_duration, error = future.result()
# results.append((i, txt_clip, audio_segment, actual_duration))
# if error:
# error_messages.append(f"[Entry {i}] {error}")
# except Exception as e:
# err = f"❌ Unexpected error in future result: {e}"
# error_messages.append(err)
# Use dict as a placeholder, any failure will leave a (None, None, 0)
futures = {
executor.submit(
process_entry, entry, idx, tts_model, video.w, video.h,
process_mode, target_language, font_path, speaker_sample_paths
): idx
for idx, entry in enumerate(translated_json)
}
# Give each entry a placeholder first to prevent overstepping boundaries
result_map = {idx: (None, None, 0) for idx in range(len(translated_json))}
for future in concurrent.futures.as_completed(futures):
idx = futures[future]
try:
_idx, txt, aud, dur, err = future.result()
result_map[idx] = (txt, aud, dur)
if err:
error_messages.append(f"[Entry {idx}] {err}")
except Exception as e:
# Threads that throw errors also need to take up space to prevent the list index from going out of range
error_messages.append(f"[Entry {idx}] unexpected error: {e}")
# results.sort(key=lambda x: x[0])
# text_clips = [clip for _, clip, _, _ in results if clip]
# generated_durations = [dur for _, _, _, dur in results if dur > 0]
# Sort and filter together
results.sort(key=lambda x: x[0])
filtered = [(translated_json[i], txt, aud, dur) for i, txt, aud, dur in results if dur > 0]
translated_json = [entry for entry, _, _, _ in filtered]
generated_durations = [dur for _, _, _, dur in filtered]
# Align using optimization (modifies translated_json in-place)
if generated_durations:
translated_json = solve_optimal_alignment(translated_json, generated_durations, video.duration)
else:
logger.warning("No generated audio; skip alignment optimisation.")
# Set aligned timings
# audio_segments = []
# for i, entry in enumerate(translated_json):
# segment = results[i][2] # AudioFileClip
# if segment:
# segment = segment.set_start(entry['start']).set_duration(entry['end'] - entry['start'])
# audio_segments.append(segment)
audio_segments = []
for i, entry in enumerate(translated_json):
_, seg, _dur = result_map[i] # seg is AudioFileClip
if seg:
audio_segments.append(
seg.set_start(entry["start"]).set_duration(entry["end"] - entry["start"])
)
final_video = CompositeVideoClip([video] + text_clips)
if process_mode > 1 and audio_segments:
try:
voice_audio = CompositeAudioClip(audio_segments).set_duration(video.duration)
if background_audio_path and os.path.exists(background_audio_path):
background_audio = AudioFileClip(background_audio_path).set_duration(video.duration)
final_audio = CompositeAudioClip([voice_audio, background_audio])
else:
final_audio = voice_audio
final_video = final_video.set_audio(final_audio)
except Exception as e:
print(f"❌ Failed to set audio: {e}")
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
return error_messages
def generate_voiceover_OpenAI(full_text, language, desired_speed, output_audio_path):
"""
Generate voiceover from translated text for a given language using OpenAI TTS API.
"""
# Define the voice based on the language (for now, use 'alloy' as default)
voice = "alloy" # Adjust based on language if needed
# Define the model (use tts-1 for real-time applications)
model = "tts-1"
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
# Create the speech using OpenAI TTS API
response = client.audio.speech.create(
model=model,
voice=voice,
input=full_text,
speed=desired_speed
)
# Save the audio to the specified path
with open(output_audio_path, 'wb') as f:
for chunk in response.iter_bytes():
f.write(chunk)
logging.info(f"Voiceover generated successfully for {output_audio_path}")
break
except Exception as e:
retry_count += 1
logging.error(f"Error generating voiceover (retry {retry_count}/{max_retries}): {e}")
time.sleep(5) # Wait 5 seconds before retrying
if retry_count == max_retries:
raise ValueError(f"Failed to generate voiceover after {max_retries} retries.")
def generate_voiceover_clone(full_text, tts_model, desired_speed, target_language, speaker_wav_path, output_audio_path):
try:
tts_model.tts_to_file(
text=full_text,
speaker_wav=speaker_wav_path,
language=target_language,
file_path=output_audio_path,
speed=desired_speed,
split_sentences=True
)
msg = (
f"✅ Voice cloning completed successfully. "
f"[Speaker Wav: {speaker_wav_path}] [Speed: {desired_speed}]"
)
logger.info(msg)
return output_audio_path, msg, None
except Exception as e:
generate_voiceover_OpenAI(full_text, target_language, desired_speed, output_audio_path)
err_msg = f"❌ An error occurred: {str(e)}, fallback to premium voice"
logger.error(traceback.format_exc())
return None, err_msg, err_msg
def apply_adaptive_speed(translated_json_raw, source_language, target_language, k=3.0, default_prior_speed=5.0):
"""
Adds `speed` (relative, 1.0 = normal speed) and `target_duration` (sec) to each segment
using shrinkage-based estimation, language stretch ratios, and optional style modifiers.
Speeds are clamped to [0.85, 1.7] to avoid unnatural TTS behavior.
"""
translated_json = copy.deepcopy(translated_json_raw)
# Prior average speech speeds by (category, target language)
priors = {
("drama", "en"): 5.0,
("drama", "zh"): 4.5,
("tutorial", "en"): 5.2,
("tutorial", "zh"): 4.8,
("shortplay", "en"): 5.1,
("shortplay", "zh"): 4.7,
}
# Adjustment ratio based on language pair (source → target)
lang_ratio = {
("zh", "en"): 0.85,
("en", "zh"): 1.15,
("zh", "jp"): 1.05,
("en", "ja"): 0.9,
}
# Optional style modulation factor
style_modifiers = {
"dramatic": 0.9,
"urgent": 1.1,
"neutral": 1.0
}
for idx, entry in enumerate(translated_json):
start, end = float(entry.get("start", 0)), float(entry.get("end", 0))
duration = max(0.1, end - start)
original_text = entry.get("original", "")
translated_text = entry.get("translated", "")
category = entry.get("category", "drama")
source_lang = source_language
target_lang = target_language
style = entry.get("style", "neutral").lower()
# Observed speed from original
base_text = original_text or translated_text
obs_speed = len(base_text) / duration
# Prior speed
prior_speed = priors.get((category, target_lang), default_prior_speed)
# Shrinkage
shrink_speed = (duration * obs_speed + k * prior_speed) / (duration + k)
# Language pacing adjustment
ratio = lang_ratio.get((source_lang, target_lang), 1.0)
adjusted_speed = shrink_speed * ratio
# Style modulation
mod = style_modifiers.get(style, 1.0)
adjusted_speed *= mod
# Final relative speed (normalized to prior)
relative_speed = adjusted_speed / prior_speed
# Clamp relative speed to [0.85, 1.7]
relative_speed = max(0.85, min(1.7, relative_speed))
# Compute target duration for synthesis
target_chars = len(translated_text)
target_duration = round(target_chars / adjusted_speed, 2)
# Logging
logger.info(
f"[Segment {idx}] dur={duration:.2f}s | obs_speed={obs_speed:.2f} | prior={prior_speed:.2f} | "
f"shrinked={shrink_speed:.2f} | lang_ratio={ratio} | style_mod={mod} | "
f"adj_speed={adjusted_speed:.2f} | rel_speed={relative_speed:.2f} | "
f"target_dur={target_duration:.2f}s"
)
entry["speed"] = round(relative_speed, 3)
entry["target_duration"] = target_duration
return translated_json
def calibrated_speed(text, desired_duration):
"""
Compute a speed factor to help TTS fit audio into desired duration,
using a simple truncated linear function of characters per second.
"""
char_count = len(text.strip())
if char_count == 0 or desired_duration <= 0:
return 1.0 # fallback
cps = char_count / desired_duration # characters per second
# Truncated linear mapping
if cps < 14:
return 1.0
elif cps > 25.2:
return 1.7
else:
slope = (1.7 - 1.0) / (25.2 - 14)
return 1.0 + slope * (cps - 14)
def upload_and_manage(file, target_language, process_mode):
if file is None:
logger.info("No file uploaded. Please upload a video/audio file.")
return None, [], None, "No file uploaded. Please upload a video/audio file."
try:
start_time = time.time() # Start the timer
logger.info(f"Started processing file: {file.name}")
# Define paths for audio and output files
audio_path = "audio.wav"
output_video_path = "output_video.mp4"
voiceover_path = "voiceover.wav"
logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
# Step 1: Transcribe audio from uploaded media file and get timestamps
logger.info("Transcribing audio...")
transcription_json, source_language = transcribe_video_with_speakers(file.name)
logger.info(f"Transcription completed. Detected source language: {source_language}")
translated_json_raw = punctuate_and_translate_parallel(transcription_json, source_language, target_language, openai_client = client)
# Step 2: Translate the transcription
# logger.info(f"Translating transcription from {source_language} to {target_language}...")
# translated_json_raw = translate_text(transcription_json_merged, )
logger.info(f"Translation completed. Number of translated segments: {len(translated_json_raw)}")
translated_json = apply_adaptive_speed(translated_json_raw, source_language, target_language)
# Step 3: Add transcript to video based on timestamps
logger.info("Adding translated transcript to video...")
add_transcript_voiceover(file.name, translated_json, output_video_path, process_mode, target_language)
logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
# Convert translated JSON into a format for the editable table
logger.info("Converting translated JSON into editable table format...")
editable_table = [
[float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
for entry in translated_json
]
# Calculate elapsed time
elapsed_time = time.time() - start_time
elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
return source_language, editable_table, output_video_path, elapsed_time_display
except Exception as e:
logger.error(f"An error occurred: {str(e)}")
return None, [], None, f"An error occurred: {str(e)}"
# Gradio Interface with Tabs
def build_interface():
with gr.Blocks(css=css) as demo:
gr.Markdown("## Video Localization")
with gr.Row():
with gr.Column(scale=4):
file_input = gr.File(label="Upload Video/Audio File")
language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language")
source_language_display = gr.Textbox(label="Detected Source Language", interactive=False)
process_mode = gr.Radio(
choices=[("Transcription Only", 1), ("Transcription with Premium Voice", 2), ("Transcription with Voice Clone", 3)],
label="Choose Processing Type",
value=1
)
submit_button = gr.Button("Post and Process")
with gr.Column(scale=8):
gr.Markdown("## Edit Translations")
# Editable JSON Data
editable_table = gr.Dataframe(
value=[], # Default to an empty list to avoid undefined values
headers=["start", "original", "translated", "end", "speaker"],
datatype=["number", "str", "str", "number", "str"],
row_count=1, # Initially empty
col_count=5,
interactive=[False, True, True, False, False], # Control editability
label="Edit Translations",
wrap=True # Enables text wrapping if supported
)
save_changes_button = gr.Button("Save Changes")
processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
with gr.Column(scale=1):
gr.Markdown("**Feedback**")
feedback_input = gr.Textbox(
placeholder="Leave your feedback here...",
label=None,
lines=3,
)
feedback_btn = gr.Button("Submit Feedback")
response_message = gr.Textbox(label=None, lines=1, interactive=False)
db_download = gr.File(label="Download Database File", visible=False)
# Link the feedback handling
def feedback_submission(feedback):
message, file_path = handle_feedback(feedback)
if file_path:
return message, gr.update(value=file_path, visible=True)
return message, gr.update(visible=False)
save_changes_button.click(
update_translations,
inputs=[file_input, editable_table, source_language_display, language_input, process_mode],
outputs=[processed_video_output, elapsed_time_display]
)
submit_button.click(
upload_and_manage,
inputs=[file_input, language_input, process_mode],
outputs=[source_language_display, editable_table, processed_video_output, elapsed_time_display]
)
# Connect submit button to save_feedback_db function
feedback_btn.click(
feedback_submission,
inputs=[feedback_input],
outputs=[response_message, db_download]
)
return demo
tts_model = None
# Launch the Gradio interface
demo = build_interface()
demo.launch()