File size: 58,260 Bytes
40b3f9e
 
 
e35aecd
40b3f9e
 
f96fc4d
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1237e
 
 
1c18b3d
 
 
d9fe1f1
f8b99f0
 
635fb63
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7add5f8
8d5a056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7add5f8
8d5a056
 
 
 
 
 
 
 
7add5f8
 
40b3f9e
 
 
 
 
 
 
 
7add5f8
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
0c13f05
40b3f9e
 
 
 
 
 
1f8af3b
7add5f8
1f8af3b
40b3f9e
 
 
7add5f8
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a83dd80
40b3f9e
 
 
7add5f8
40b3f9e
 
7add5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b3f9e
 
7add5f8
 
 
 
40b3f9e
7add5f8
 
40b3f9e
7add5f8
 
 
 
 
 
 
 
 
 
 
40b3f9e
7add5f8
 
 
a4a5578
3898559
40b3f9e
7add5f8
3898559
7add5f8
 
40b3f9e
 
7add5f8
 
40b3f9e
 
 
 
f99e269
 
 
40b3f9e
f99e269
 
 
40b3f9e
f99e269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b3f9e
35efadd
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35efadd
 
40b3f9e
 
35efadd
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e15a2
40b3f9e
 
 
 
 
 
e2e15a2
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
526a5f6
 
40b3f9e
0489670
e2e15a2
40b3f9e
 
 
526a5f6
e2e15a2
 
 
 
 
 
 
 
 
40b3f9e
 
 
 
e2e15a2
 
40b3f9e
e2e15a2
 
526a5f6
a332ef9
 
df8571d
a332ef9
df8571d
 
a332ef9
df8571d
 
 
40b3f9e
e2e15a2
40b3f9e
e2e15a2
40b3f9e
 
a12a54f
40b3f9e
 
940ca8e
 
4e27cf9
40b3f9e
 
 
 
 
a12a54f
 
 
40b3f9e
 
 
 
 
 
 
8953421
40b3f9e
 
 
 
 
 
 
 
 
 
4e27cf9
 
 
 
40b3f9e
 
4e27cf9
40b3f9e
 
940ca8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b3f9e
4e27cf9
 
 
 
 
40b3f9e
f99e269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f940f
f99e269
 
c6f940f
f99e269
 
 
 
c6f940f
f99e269
 
c6f940f
f99e269
 
 
 
 
 
38d8739
f99e269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320e5b
f99e269
 
 
 
1320e5b
f99e269
 
 
1320e5b
f99e269
 
 
1320e5b
f99e269
 
 
 
c34772c
f99e269
 
 
 
 
d9fe1f1
f99e269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9fe1f1
f99e269
f57819a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9fe1f1
f99e269
f57819a
 
 
 
 
 
 
f99e269
 
 
 
 
 
 
7add5f8
f99e269
f57819a
bbc39f5
f99e269
 
 
 
 
bbc39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57819a
bbc39f5
 
f57819a
7add5f8
f57819a
 
bbc39f5
f57819a
 
 
bbc39f5
f57819a
 
bbc39f5
f57819a
 
 
 
 
 
 
 
 
f99e269
 
 
 
f57819a
 
f99e269
 
f57819a
bbc39f5
 
f57819a
f99e269
 
 
 
 
f57819a
f99e269
7add5f8
f57819a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99e269
f57819a
 
 
f99e269
f57819a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99e269
66933cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7add5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9fe1f1
 
 
 
 
 
 
b83a564
d9fe1f1
 
c34772c
 
 
 
 
 
 
7d826f9
d9fe1f1
 
 
7add5f8
dd10881
7add5f8
1c18b3d
7add5f8
 
7d826f9
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e35aecd
40b3f9e
a83dd80
40b3f9e
 
a82093d
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a82093d
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
129e2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b3f9e
129e2e0
40b3f9e
129e2e0
 
 
 
40b3f9e
129e2e0
 
 
 
 
 
 
a12a54f
 
 
 
 
 
 
40b3f9e
129e2e0
 
 
 
 
 
 
 
 
 
 
 
40b3f9e
 
129e2e0
 
 
 
 
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e27cf9
 
 
 
40b3f9e
 
 
 
 
 
 
 
 
e35aecd
 
4e27cf9
 
 
e35aecd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e27cf9
 
e35aecd
 
 
 
 
 
 
 
 
 
 
 
4e27cf9
e35aecd
 
 
 
 
4e27cf9
e35aecd
 
4e27cf9
e35aecd
 
4e27cf9
e35aecd
 
 
4e27cf9
 
e35aecd
 
4e27cf9
 
 
 
 
 
 
e35aecd
8953421
e35aecd
4e27cf9
e35aecd
4e27cf9
 
 
 
e35aecd
 
4e27cf9
e35aecd
 
 
 
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
966f4e1
 
40b3f9e
966f4e1
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224f37e
40b3f9e
f99e269
 
5f6148c
40b3f9e
e35aecd
 
40b3f9e
 
5f6148c
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
35efadd
40b3f9e
 
 
6da3f79
40b3f9e
 
 
 
 
 
 
 
35efadd
 
 
 
 
 
 
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35efadd
40b3f9e
 
 
 
 
 
35efadd
40b3f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
import numpy as np
import cvxpy as cp
import re
import copy
import concurrent.futures
import gradio as gr

from datetime import datetime
import random
import moviepy
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy.editor import (
    ImageClip,
    VideoFileClip,
    TextClip, 
    CompositeVideoClip,
    CompositeAudioClip,
    AudioFileClip,
    concatenate_videoclips,
    concatenate_audioclips
)
from PIL import Image, ImageDraw, ImageFont
from moviepy.audio.AudioClip import AudioArrayClip
import subprocess
import json
import logging
import whisperx
import time
import os
import openai 
from openai import OpenAI 
import traceback
from TTS.api import TTS
import torch
from pydub import AudioSegment
from pyannote.audio import Pipeline
import wave
import librosa
import noisereduce as nr
import soundfile as sf
from paddleocr import PaddleOCR
import cv2
from rapidfuzz import fuzz
from tqdm import tqdm
import threading


logger = logging.getLogger(__name__)

# Configure logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
logger.info(f"MoviePy Version: {moviepy.__version__}")

# Accept license terms for Coqui XTTS
os.environ["COQUI_TOS_AGREED"] = "1"
# torch.serialization.add_safe_globals([XttsConfig])

logger.info(gr.__version__)

client = OpenAI(
    api_key= os.environ.get("openAI_api_key"),  # This is the default and can be omitted
)
hf_api_key = os.environ.get("hf_token")

def silence(duration, fps=44100):
    """
    Returns a silent AudioClip of the specified duration.
    """
    return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)

def count_words_or_characters(text):
    # Count non-Chinese words
    non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
    
    # Count Chinese characters
    chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
    
    return non_chinese_words + chinese_chars
    
# Define the passcode
PASSCODE = "show_feedback_db"

css = """
/* Adjust row height */
.dataframe-container tr {
    height: 50px !important; 
}

/* Ensure text wrapping and prevent overflow */
.dataframe-container td {
    white-space: normal !important; 
    word-break: break-word !important;
}

/* Set column widths */
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1), 
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
    width: 6%; /* Start column */
}

[data-testid="block-container"] .scrolling-dataframe th:nth-child(2), 
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
    width: 47%; /* Original text */
}

[data-testid="block-container"] .scrolling-dataframe th:nth-child(3), 
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
    width: 47%; /* Translated text */
}

[data-testid="block-container"] .scrolling-dataframe th:nth-child(4), 
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
    display: none !important;
}
"""

# Function to save feedback or provide access to the database file
def handle_feedback(feedback):
    feedback = feedback.strip()  # Clean up leading/trailing whitespace
    if not feedback:
        return "Feedback cannot be empty.", None

    if feedback == PASSCODE:
        # Provide access to the feedback.db file
        return "Access granted! Download the database file below.", "feedback.db"
    else:
        # Save feedback to the database
        with sqlite3.connect("feedback.db") as conn:
            cursor = conn.cursor()
            cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
            cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
            conn.commit()
        return "Thank you for your feedback!", None

def segment_background_audio(audio_path, background_audio_path="background_segments.wav", speech_audio_path="speech_segment.wav"):
    """
    Uses Demucs to separate audio and extract background (non-vocal) parts.
    Merges drums, bass, and other stems into a single background track.
    """
    # Step 1: Run Demucs using the 4-stem model
    subprocess.run([
        "demucs",
        "-n", "htdemucs",  # 4-stem model
        audio_path
    ], check=True)

    # Step 2: Locate separated stem files
    filename = os.path.splitext(os.path.basename(audio_path))[0]
    stem_dir = os.path.join("separated", "htdemucs", filename)

    # Step 3: Load and merge background stems
    vocals = AudioSegment.from_wav(os.path.join(stem_dir, "vocals.wav"))
    drums = AudioSegment.from_wav(os.path.join(stem_dir, "drums.wav"))
    bass = AudioSegment.from_wav(os.path.join(stem_dir, "bass.wav"))
    other = AudioSegment.from_wav(os.path.join(stem_dir, "other.wav"))

    background = drums.overlay(bass).overlay(other)

    # Step 4: Export the merged background
    background.export(background_audio_path, format="wav")
    vocals.export(speech_audio_path, format="wav")
    return background_audio_path, speech_audio_path

def transcribe_video_with_speakers(video_path):
    # Extract audio from video
    video = VideoFileClip(video_path)
    audio_path = "audio.wav"
    video.audio.write_audiofile(audio_path)
    logger.info(f"Audio extracted from video: {audio_path}")

    segment_result, speech_audio_path = segment_background_audio(audio_path)
    print(f"Saved non-speech (background) audio to local")
    
    # Set up device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    logger.info(f"Using device: {device}")
    
    try:
        # Load a medium model with float32 for broader compatibility
        model = whisperx.load_model("large-v3", device=device, compute_type="float32")
        logger.info("WhisperX model loaded")
    
        # Transcribe
        result = model.transcribe(speech_audio_path, chunk_size=4, print_progress = True)
        logger.info("Audio transcription completed")

        # Get the detected language
        detected_language = result["language"]
        logger.debug(f"Detected language: {detected_language}")
        # Alignment
        # model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
        # result = whisperx.align(result["segments"], model_a, metadata, speech_audio_path, device)
        # logger.info("Transcription alignment completed")
    
        # Diarization (works independently of Whisper model size)
        diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
        diarize_segments = diarize_model(speech_audio_path)
        logger.info("Speaker diarization completed")
    
        # Assign speakers
        result = whisperx.assign_word_speakers(diarize_segments, result)
        logger.info("Speakers assigned to transcribed segments")
    
    except Exception as e:
        logger.error(f"❌ WhisperX pipeline failed: {e}")

    # Extract timestamps, text, and speaker IDs
    transcript_with_speakers = [
        {
            "start": segment["start"],
            "end": segment["end"],
            "text": segment["text"],
            "speaker": segment.get("speaker", "SPEAKER_00")
        }
        for segment in result["segments"]
    ]
        
    # Collect audio for each speaker
    speaker_audio = {}
    logger.info("πŸ”Ž Start collecting valid audio segments per speaker...")
    
    for idx, segment in enumerate(result["segments"]):
        speaker = segment.get("speaker", "SPEAKER_00")
        start = segment["start"]
        end = segment["end"]
    
        if end > start and (end - start) > 0.05:  # Require >50ms duration
            if speaker not in speaker_audio:
                speaker_audio[speaker] = [(start, end)]
            else:
                speaker_audio[speaker].append((start, end))
            
            logger.debug(f"Segment {idx}: Added to speaker {speaker} [{start:.2f}s β†’ {end:.2f}s]")
        else:
            logger.warning(f"⚠️ Segment {idx} discarded: invalid duration ({start:.2f}s β†’ {end:.2f}s)")
    
    # Collapse and truncate speaker audio
    speaker_sample_paths = {}
    audio_clip = AudioFileClip(speech_audio_path)
    
    logger.info(f"πŸ”Ž Found {len(speaker_audio)} speakers with valid segments. Start creating speaker samples...")
    
    for speaker, segments in speaker_audio.items():
        logger.info(f"πŸ”Ή Speaker {speaker}: {len(segments)} valid segments")
    
        speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
        if not speaker_clips:
            logger.warning(f"⚠️ No valid audio clips for speaker {speaker}. Skipping sample creation.")
            continue
    
        if len(speaker_clips) == 1:
            logger.debug(f"Speaker {speaker}: Only one clip, skipping concatenation.")
            combined_clip = speaker_clips[0]
        else:
            logger.debug(f"Speaker {speaker}: Concatenating {len(speaker_clips)} clips.")
            combined_clip = concatenate_audioclips(speaker_clips)
    
        truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
        logger.debug(f"Speaker {speaker}: Truncated to {truncated_clip.duration:.2f} seconds.")

        # Step 4: Save the final result
        sample_path = f"speaker_{speaker}_sample.wav"
        truncated_clip.write_audiofile(sample_path)
        speaker_sample_paths[speaker] = sample_path
        logger.info(f"βœ… Created and saved sample for {speaker}: {sample_path}")

    # Cleanup
    logger.info("🧹 Closing audio clip and removing temporary files...")
    video.close()
    audio_clip.close()
    os.remove(speech_audio_path)
    logger.info("βœ… Finished processing all speaker samples.")

    return transcript_with_speakers, detected_language

# Function to get the appropriate translation model based on target language
# def get_translation_model(source_language, target_language):
#     """
#     Get the translation model based on the source and target language.

#     Parameters:
#     - target_language (str): The language to translate the content into (e.g., 'es', 'fr').
#     - source_language (str): The language of the input content (default is 'en' for English).
    
#     Returns:
#     - str: The translation model identifier.
#     """
#     # List of allowable languages
#     allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru", "hi", "tr"]

#     # Validate source and target languages
#     if source_language not in allowable_languages:
#         logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
#         # Return a default model if source language is invalid
#         source_language = "en"  # Default to 'en'

#     if target_language not in allowable_languages:
#         logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
#         # Return a default model if target language is invalid
#         target_language = "zh"  # Default to 'zh'

#     if source_language == target_language:
#         source_language = "en"  # Default to 'en'
#         target_language = "zh"  # Default to 'zh'

#     # Return the model using string concatenation
#     return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"

# def translate_single_entry(entry, translator):
#     original_text = entry["text"]
#     translated_text = translator(original_text)[0]['translation_text']
#     return {
#         "start": entry["start"],
#         "original": original_text,
#         "translated": translated_text,
#         "end": entry["end"],
#         "speaker": entry["speaker"]
#     }

# def translate_text(transcription_json, source_language, target_language):
#     # Load the translation model for the specified target language
#     translation_model_id = get_translation_model(source_language, target_language)
#     logger.debug(f"Translation model: {translation_model_id}")
#     translator = pipeline("translation", model=translation_model_id)

#     # Use ThreadPoolExecutor to parallelize translations
#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         # Submit all translation tasks and collect results
#         translate_func = lambda entry: translate_single_entry(entry, translator)
#         translated_json = list(executor.map(translate_func, transcription_json))

#     # Sort the translated_json by start time
#     translated_json.sort(key=lambda x: x["start"])

#     # Log the components being added to translated_json
#     for entry in translated_json:
#         logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s, speaker=%s",
#                      entry["start"], entry["original"], entry["translated"], entry["end"], entry["speaker"])

#     return translated_json

def update_translations(file, edited_table, source_language, target_language, process_mode):
    """
    Update the translations based on user edits in the Gradio Dataframe.
    """
    output_video_path = "output_video.mp4"
    logger.debug(f"Editable Table: {edited_table}")

    if file is None:
        logger.info("No file uploaded. Please upload a video/audio file.")
        return None, [], None, "No file uploaded. Please upload a video/audio file."
        
    try:
        start_time = time.time()  # Start the timer

        # Convert the edited_table (list of lists) back to list of dictionaries
        updated_translations = [
            {
                "start": row["start"],  # Access by column name
                "original": row["original"],
                "translated": row["translated"],
                "end": row["end"]
            }
            for _, row in edited_table.iterrows()
        ]
        
        translated_json = apply_adaptive_speed(updated_translations, source_language, target_language)

        # Call the function to process the video with updated translations
        add_transcript_voiceover(file.name, translated_json, output_video_path, process_mode)

        # Calculate elapsed time
        elapsed_time = time.time() - start_time
        elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."

        return output_video_path, elapsed_time_display

    except Exception as e:
        raise ValueError(f"Error updating translations: {e}")

def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
    try:
        subtitle_width = int(video_width * 0.8)
        aspect_ratio = video_height / video_width
        subtitle_font_size = int(video_width // 22 if aspect_ratio > 1.2 else video_height // 24)

        font = ImageFont.truetype(font_path, subtitle_font_size)

        dummy_img = Image.new("RGBA", (subtitle_width, 1), (0, 0, 0, 0))
        draw = ImageDraw.Draw(dummy_img)

        # Word wrapping
        lines = []
        line = ""
        for word in text.split():
            test_line = f"{line} {word}".strip()
            bbox = draw.textbbox((0, 0), test_line, font=font)
            w = bbox[2] - bbox[0]
            if w <= subtitle_width - 10:
                line = test_line
            else:
                lines.append(line)
                line = word
        lines.append(line)
        
        outline_width=2
        line_heights = [draw.textbbox((0, 0), l, font=font)[3] - draw.textbbox((0, 0), l, font=font)[1] for l in lines]
        total_height = sum(line_heights) + (len(lines) - 1) * 5 + 6 * outline_width

        img = Image.new("RGBA", (subtitle_width, total_height), (0, 0, 0, 0))
        draw = ImageDraw.Draw(img)

        def draw_text_with_outline(draw, pos, text, font, fill="yellow", outline="black", outline_width = outline_width):
            x, y = pos
            # Draw outline
            for dx in range(-outline_width, outline_width + 1):
                for dy in range(-outline_width, outline_width + 1):
                    if dx != 0 or dy != 0:
                        draw.text((x + dx, y + dy), text, font=font, fill=outline)
            # Draw main text
            draw.text((x, y), text, font=font, fill=fill)

        y = 0
        for idx, line in enumerate(lines):
            bbox = draw.textbbox((0, 0), line, font=font)
            w = bbox[2] - bbox[0]
            x = (subtitle_width - w) // 2
            draw_text_with_outline(draw, (x, y), line, font)
            y += line_heights[idx] + 5

        img_np = np.array(img)
        margin = int(video_height * 0.05)
        img_clip = ImageClip(img_np) # Create the ImageClip first
        image_height = img_clip.size[1]
        txt_clip = (
            img_clip  # Use the already created clip
            .set_start(start_time)
            .set_duration(end_time - start_time)
            .set_position(("center", video_height - image_height - margin))
            .set_opacity(0.9)
        )

        return txt_clip

    except Exception as e:
        logger.error(f"❌ Failed to create subtitle clip: {e}")
        return None


def solve_optimal_alignment(original_segments, generated_durations, total_duration):
    """
    Aligns speech segments using quadratic programming. If optimization fails,
    applies greedy fallback: center shorter segments, stretch longer ones.
    Logs alignment results for traceability.
    """
    N = len(original_segments)
    d = np.array(generated_durations)
    m = np.array([(seg['start'] + seg['end']) / 2 for seg in original_segments])

    if N == 0 or len(generated_durations) == 0:
        logger.warning("⚠️ Alignment skipped: empty segments or durations.")
        return original_segments  # or raise an error, depending on your app logic
    try:
        s = cp.Variable(N)
        objective = cp.Minimize(cp.sum_squares(s + d / 2 - m))

        constraints = [s[0] >= 0]
        for i in range(N - 1):
            constraints.append(s[i] + d[i] <= s[i + 1])
        constraints.append(s[N - 1] + d[N - 1] <= total_duration)

        problem = cp.Problem(objective, constraints)
        problem.solve()

        if s.value is None:
            raise ValueError("Solver failed")

        for i in range(N):
            original_segments[i]['start'] = round(s.value[i], 3)
            original_segments[i]['end'] = round(s.value[i] + d[i], 3)
            logger.info(
                f"[OPT] Segment {i}: duration={d[i]:.2f}s | start={original_segments[i]['start']:.2f}s | "
                f"end={original_segments[i]['end']:.2f}s | mid={m[i]:.2f}s"
            )

    except Exception as e:
        logger.warning(f"⚠️ Optimization failed: {e}, falling back to greedy alignment.")

        for i in range(N):
            orig_start = original_segments[i]['start']
            orig_end = original_segments[i]['end']
            orig_mid = (orig_start + orig_end) / 2
            gen_duration = generated_durations[i]
            orig_duration = orig_end - orig_start

            if gen_duration <= orig_duration:
                new_start = orig_mid - gen_duration / 2
                new_end = orig_mid + gen_duration / 2
            else:
                extra = (gen_duration - orig_duration) / 2
                new_start = orig_start - extra
                new_end = orig_end + extra

                if i > 0:
                    prev_end = original_segments[i - 1]['end']
                    new_start = max(new_start, prev_end + 0.01)

                if i < N - 1:
                    next_start = original_segments[i + 1]['start']
                    new_end = min(new_end, next_start - 0.01)

                if new_end <= new_start:
                    new_start = orig_start
                    new_end = orig_start + gen_duration

            original_segments[i]['start'] = round(new_start, 3)
            original_segments[i]['end'] = round(new_end, 3)

            logger.info(
                f"[FALLBACK] Segment {i}: duration={gen_duration:.2f}s | start={new_start:.2f}s | "
                f"end={new_end:.2f}s | original_mid={orig_mid:.2f}s"
            )

    return original_segments
# ocr_model = None
# ocr_lock = threading.Lock()

# def init_ocr_model():
#     global ocr_model
#     with ocr_lock:
#         if ocr_model is None:
#             ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")

# def find_best_subtitle_region(frame, ocr_model, region_height_ratio=0.35, num_strips=5, min_conf=0.5):
#     """
#     Automatically identifies the best subtitle region in a video frame using OCR confidence.

#     Parameters:
#     - frame: full video frame (BGR np.ndarray)
#     - ocr_model: a loaded PaddleOCR model
#     - region_height_ratio: portion of image height to scan (from bottom up)
#     - num_strips: how many horizontal strips to evaluate
#     - min_conf: minimum average confidence to consider a region valid

#     Returns:
#     - crop_region: the cropped image region with highest OCR confidence
#     - region_box: (y_start, y_end) of the region in the original frame
#     """
#     height, width, _ = frame.shape
#     region_height = int(height * region_height_ratio)
#     base_y_start = height - region_height
#     strip_height = region_height // num_strips

#     best_score = -1
#     best_crop = None
#     best_bounds = (0, height)

#     for i in range(num_strips):
#         y_start = base_y_start + i * strip_height
#         y_end = y_start + strip_height
#         strip = frame[y_start:y_end, :]

#         try:
#             result = ocr_model.ocr(strip, cls=True)
#             if not result or not result[0]:
#                 continue

#             total_score = sum(line[1][1] for line in result[0])
#             avg_score = total_score / len(result[0])

#             if avg_score > best_score:
#                 best_score = avg_score
#                 best_crop = strip
#                 best_bounds = (y_start, y_end)

#         except Exception as e:
#             continue  # Fail silently on OCR issues

#     if best_score >= min_conf and best_crop is not None:
#         return best_crop, best_bounds
#     else:
#         # Fallback to center-bottom strip
#         fallback_y = height - int(height * 0.2)
#         return frame[fallback_y:, :], (fallback_y, height)
        
# def ocr_frame_worker(args, min_confidence=0.7):
#     frame_idx, frame_time, frame = args

#     init_ocr_model()  # Load model in thread-safe way

#     if frame is None or frame.size == 0 or not isinstance(frame, np.ndarray):
#         return {"time": frame_time, "text": ""}

#     if frame.dtype != np.uint8:
#         frame = frame.astype(np.uint8)

#     try:
#         result = ocr_model.ocr(frame, cls=True)
#         lines = result[0] if result else []
#         texts = [line[1][0] for line in lines if line[1][1] >= min_confidence]
#         combined_text = " ".join(texts).strip()
#         return {"time": frame_time, "text": combined_text}
#     except Exception as e:
#         print(f"⚠️ OCR failed at {frame_time:.2f}s: {e}")
#         return {"time": frame_time, "text": ""}

# def frame_is_in_audio_segments(frame_time, audio_segments, tolerance=0.2):
#     for segment in audio_segments:
#         start, end = segment["start"], segment["end"]
#         if (start - tolerance) <= frame_time <= (end + tolerance):
#             return True
#     return False

# def extract_ocr_subtitles_parallel(video_path, transcription_json, interval_sec=0.5, num_workers=4):
#     cap = cv2.VideoCapture(video_path)
#     fps = cap.get(cv2.CAP_PROP_FPS)
#     frames = []
#     frame_idx = 0
#     success, frame = cap.read()

#     while success:
#         if frame_idx % int(fps * interval_sec) == 0:
#             frame_time = frame_idx / fps
#             if frame_is_in_audio_segments(frame_time, transcription_json):
#                 frames.append((frame_idx, frame_time, frame.copy()))
#         success, frame = cap.read()
#         frame_idx += 1
#     cap.release()

#     ocr_results = []
#     ocr_failures = 0  # Count OCR failures
#     with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
#         futures = [executor.submit(ocr_frame_worker, frame) for frame in frames]

#         for f in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
#             try:
#                 result = f.result()
#                 if result["text"]:
#                     ocr_results.append(result)
#             except Exception as e:
#                 ocr_failures += 1

#     logger.info(f"βœ… OCR extraction completed: {len(ocr_results)} frames successful, {ocr_failures} frames failed.")
#     return ocr_results

# def collapse_ocr_subtitles(ocr_json, text_similarity_threshold=90):
#     collapsed = []
#     current = None
#     for entry in ocr_json:
#         time = entry["time"]
#         text = entry["text"]

#         if not current:
#             current = {"start": time, "end": time, "text": text}
#             continue

#         sim = fuzz.ratio(current["text"], text)
#         if sim >= text_similarity_threshold:
#             current["end"] = time
#             logger.debug(f"MERGED: Current end extended to {time:.2f}s for text: '{current['text'][:50]}...' (Similarity: {sim})")
#         else:
#             logger.debug(f"NOT MERGING (Similarity: {sim} < Threshold: {text_similarity_threshold}):")
#             logger.debug(f"  Previous segment: {current['start']:.2f}s - {current['end']:.2f}s: '{current['text'][:50]}...'")
#             logger.debug(f"  New segment: {time:.2f}s: '{text[:50]}...'")
#             collapsed.append(current)
#             current = {"start": time, "end": time, "text": text}
#     if current:
#         collapsed.append(current)

#     logger.info(f"βœ… OCR subtitles collapsed into {len(collapsed)} segments.")
#     for idx, seg in enumerate(collapsed):
#         logger.debug(f"[OCR Collapsed {idx}] {seg['start']:.2f}s - {seg['end']:.2f}s: {seg['text'][:50]}...")
#     return collapsed

# def merge_speaker_and_time_from_whisperx(
#     ocr_json,
#     whisperx_json,
#     replace_threshold=90,
#     time_tolerance=1.0
# ):
#     merged = []
#     used_whisperx = set()
#     whisperx_used_flags = [False] * len(whisperx_json)

#     # Step 1: Attempt to match each OCR entry to a WhisperX entry
#     for ocr in ocr_json:
#         ocr_start, ocr_end = ocr["start"], ocr["end"]
#         ocr_text = ocr["text"]

#         best_match = None
#         best_score = -1
#         best_idx = None

#         for idx, wx in enumerate(whisperx_json):
#             wx_start, wx_end = wx["start"], wx["end"]
#             wx_text = wx["text"]

#             # Check for time overlap
#             overlap = not (ocr_end < wx_start - time_tolerance or ocr_start > wx_end + time_tolerance)
#             if not overlap:
#                 continue

#             sim = fuzz.ratio(ocr_text, wx_text)
#             if sim > best_score:
#                 best_score = sim
#                 best_match = wx
#                 best_idx = idx

#         if best_match and best_score >= replace_threshold:
#             # Replace WhisperX segment with higher quality OCR text
#             new_segment = copy.deepcopy(best_match)
#             new_segment["text"] = ocr_text
#             new_segment["ocr_replaced"] = True
#             new_segment["ocr_similarity"] = best_score
#             whisperx_used_flags[best_idx] = True
#             merged.append(new_segment)
#         else:
#             # No replacement, check if this OCR is outside WhisperX time coverage
#             covered = any(
#                 abs((ocr_start + ocr_end)/2 - (wx["start"] + wx["end"])/2) < time_tolerance
#                 for wx in whisperx_json
#             )
#             if not covered:
#                 new_segment = copy.deepcopy(ocr)
#                 new_segment["ocr_added"] = True
#                 new_segment["speaker"] = "UNKNOWN"
#                 merged.append(new_segment)

#     # Step 2: Add untouched WhisperX segments
#     for idx, wx in enumerate(whisperx_json):
#         if not whisperx_used_flags[idx]:
#             merged.append(wx)

#     # Step 3: Sort all merged segments
#     merged = sorted(merged, key=lambda x: x["start"])

#     return merged
# --- Function Definitions ---

def process_segment_with_gpt(segment, source_lang, target_lang, model="gpt-4", openai_client=None):
    """
    Processes a single text segment: restores punctuation and translates using an OpenAI GPT model.
    """
    if openai_client is None:
        segment_identifier = f"{segment.get('start', 'N/A')}-{segment.get('end', 'N/A')}"
        logger.error(f"❌ OpenAI client was not provided for segment {segment_identifier}. Cannot process.")
        return {
            "start": segment.get("start"),
            "end": segment.get("end"),
            "speaker": segment.get("speaker", "SPEAKER_00"),
            "original": segment["text"],
            "translated": "[ERROR: OpenAI client not provided]"
        }

    original_text = segment["text"]
    segment_id = f"{segment['start']}-{segment['end']}" # Create a unique ID for this segment for easier log tracking

    logger.debug(
        f"Starting processing for segment {segment_id}. "
        f"Original text preview: '{original_text[:100]}{'...' if len(original_text) > 100 else ''}'"
    )

    prompt = (
        f"You are a multilingual assistant. Given the following text in {source_lang}, "
        f"1) restore punctuation, and 2) translate it into {target_lang}.\n\n"
        f"Text:\n{original_text}\n\n"
        f"Return in JSON format:\n"
        f'{{"punctuated": "...", "translated": "..."}}'
    )

    try:
        logger.debug(f"Sending request to OpenAI model '{model}' for segment {segment_id}...")
        response = openai_client.chat.completions.create(
            model=model,
            messages=[{"role": "user", "content": prompt}],
            temperature=0.3
        )
        content = response.choices[0].message.content.strip()

        # --- NEW LOGIC: Clean markdown code block fences from the response ---
        cleaned_content = content
        if content.startswith("```") and content.endswith("```"):
            # Attempt to find the actual JSON object within the markdown fence
            json_start_index = content.find('{')
            json_end_index = content.rfind('}')

            if json_start_index != -1 and json_end_index != -1 and json_end_index > json_start_index:
                cleaned_content = content[json_start_index : json_end_index + 1]
                logger.debug(f"Removed markdown fences for segment {segment_id}. Extracted JSON portion.")
            else:
                logger.warning(
                    f"⚠️ Content starts/ends with '```' but a valid JSON object ({{...}}) was not found within "
                    f"fences for segment {segment_id}. Attempting to parse raw content. Raw content: '{content}'"
                )
        # --- END NEW LOGIC ---

        logger.debug(
            f"Attempting to parse JSON for segment {segment_id}. "
            f"Content for parsing preview: '{cleaned_content[:200]}{'...' if len(cleaned_content) > 200 else ''}'"
        )

        result_json = {}
        try:
            result_json = json.loads(cleaned_content)
        except json.JSONDecodeError as e:
            logger.warning(
                f"⚠️ Failed to parse JSON response for segment {segment_id}. Error: {e}. "
                f"Content attempted to parse: '{cleaned_content}'" # Log cleaned content here
            )
            punctuated_text = original_text
            translated_text = "" # Return empty translated text on parsing failure
        else:
            punctuated_text = result_json.get("punctuated", original_text)
            translated_text = result_json.get("translated", "")

        logger.info(
            f"βœ… Successfully processed segment {segment_id}. "
            f"Punctuated preview: '{punctuated_text[:50]}{'...' if len(punctuated_text) > 50 else ''}', "
            f"Translated preview: '{translated_text[:50]}{'...' if len(translated_text) > 50 else ''}'"
        )
        return {
            "start": segment["start"],
            "end": segment["end"],
            "speaker": segment.get("speaker", "SPEAKER_00"),
            "original": punctuated_text,
            "translated": translated_text
        }
    except Exception as e:
        logger.error(
            f"❌ An unexpected error occurred for segment {segment_id}: {e}",
            exc_info=True # This logs the full traceback
        )
        return {
            "start": segment["start"],
            "end": segment["end"],
            "speaker": segment.get("speaker", "SPEAKER_00"),
            "original": original_text,
            "translated": "[ERROR: Processing failed]"
        }

def punctuate_and_translate_parallel(transcription_json, source_lang="zh", target_lang="en", model="gpt-4o", max_workers=5, openai_client=None):
    """
    Orchestrates parallel punctuation restoration and translation of multiple segments
    using a ThreadPoolExecutor.
    """
    if not transcription_json:
        logger.warning("No segments provided in transcription_json for parallel processing. Returning an empty list.")
        return []

    logger.info(f"Starting parallel punctuation and translation for {len(transcription_json)} segments.")
    logger.info(
        f"Configuration: Model='{model}', Source Language='{source_lang}', "
        f"Target Language='{target_lang}', Max Workers={max_workers}."
    )

    results = []
    with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
        # Submit each segment for processing, ensuring the openai_client is passed to each worker
        futures = {
            executor.submit(process_segment_with_gpt, seg, source_lang, target_lang, model, openai_client): seg
            for seg in transcription_json
        }
        logger.info(f"All {len(futures)} segments have been submitted to the thread pool.")

        # Asynchronously collect results as they complete
        for i, future in enumerate(concurrent.futures.as_completed(futures)):
            segment = futures[future] # Retrieve the original segment data for logging context
            segment_id = f"{segment['start']}-{segment['end']}"
            try:
                result = future.result() # This will re-raise any exception from the worker thread
                results.append(result)
                logger.debug(f"Collected result for segment {segment_id}. ({i + 1}/{len(futures)} completed)")
            except Exception as exc:
                # This catch block is for rare cases where the future itself fails to yield a result,
                # or an exception was not caught within `process_segment_with_gpt`.
                logger.error(
                    f"Unhandled exception encountered while retrieving result for segment {segment_id}: {exc}",
                    exc_info=True
                )
                # Ensure a placeholder result is added even if future retrieval fails
                results.append({
                    "start": segment.get("start"),
                    "end": segment.get("end"),
                    "speaker": segment.get("speaker", "SPEAKER_00"),
                    "original": segment["text"],
                    "translated": "[ERROR: Unhandled exception in parallel processing]"
                })
    logger.info("πŸŽ‰ Parallel processing complete. All results collected.")
    return results
        
# def merge_speaker_and_time_from_whisperx(ocr_json, whisperx_json, text_sim_threshold=80, replace_threshold=90):
#     merged = []
#     used_whisperx = set()

#     for ocr in ocr_json:
#         ocr_start = ocr["start"]
#         ocr_end = ocr["end"]
#         ocr_text = ocr["text"]

#         best_match = None
#         best_score = -1
#         best_idx = None

#         for idx, wx in enumerate(whisperx_json):
#             wx_start, wx_end = wx["start"], wx["end"]
#             wx_text = wx["text"]

#             if idx in used_whisperx:
#                 continue  # Already matched

#             time_center_diff = abs((ocr_start + ocr_end)/2 - (wx_start + wx_end)/2)
#             if time_center_diff > 3:
#                 continue

#             sim = fuzz.ratio(ocr_text, wx_text)
#             if sim > best_score:
#                 best_score = sim
#                 best_match = wx
#                 best_idx = idx

#         new_entry = copy.deepcopy(ocr)
#         if best_match:
#             new_entry["speaker"] = best_match.get("speaker", "UNKNOWN")
#             new_entry["ocr_similarity"] = best_score

#             if best_score >= replace_threshold:
#                 new_entry["start"] = best_match["start"]
#                 new_entry["end"] = best_match["end"]
#                 used_whisperx.add(best_idx)  # Mark used

#         else:
#             new_entry["speaker"] = "UNKNOWN"
#             new_entry["ocr_similarity"] = None

#         merged.append(new_entry)
#     return merged

def realign_ocr_segments(merged_ocr_json, min_gap=0.2):
    """
    Realign OCR segments to avoid overlaps using midpoint-based adjustment.
    """
    merged_ocr_json = sorted(merged_ocr_json, key=lambda x: x["start"])

    for i in range(1, len(merged_ocr_json)):
        prev = merged_ocr_json[i - 1]
        curr = merged_ocr_json[i]

        # If current overlaps with previous, adjust
        if curr["start"] < prev["end"] + min_gap:
            midpoint = (prev["end"] + curr["start"]) / 2
            prev["end"] = round(midpoint - min_gap / 2, 3)
            curr["start"] = round(midpoint + min_gap / 2, 3)

            # Prevent negative durations
            if curr["start"] >= curr["end"]:
                curr["end"] = round(curr["start"] + 0.3, 3)

    return merged_ocr_json
def post_edit_transcribed_segments(transcription_json, video_path,
                                   interval_sec=0.5,
                                   text_similarity_threshold=80,
                                   time_tolerance=1.0,
                                   num_workers=4):
    """
    Given WhisperX transcription (transcription_json) and video,
    use OCR subtitles to post-correct and safely insert missing captions.
    """

    # Step 1: Extract OCR subtitles (only near audio segments)
    ocr_json = extract_ocr_subtitles_parallel(
        video_path, 
        transcription_json, 
        interval_sec=interval_sec, 
        num_workers=num_workers
    )

    # Step 2: Collapse repetitive OCR
    collapsed_ocr = collapse_ocr_subtitles(ocr_json, text_similarity_threshold=90)

    # Step 3: Merge and realign OCR segments.
    ocr_merged = merge_speaker_and_time_from_whisperx(collapsed_ocr, transcription_json)
    ocr_realigned = realign_ocr_segments(ocr_merged)

    logger.info(f"βœ… Final merged and realigned OCR: {len(ocr_realigned)} segments")
    return ocr_realigned

def process_entry(entry, i, tts_model, video_width, video_height, process_mode, target_language, font_path, speaker_sample_paths=None):
    logger.debug(f"Processing entry {i}: {entry}")
    error_message = None

    try:
        txt_clip = create_subtitle_clip_pil(entry["translated"], entry["start"], entry["end"], video_width, video_height, font_path)
    except Exception as e:
        error_message = f"❌ Failed to create subtitle clip for entry {i}: {e}"
        logger.error(error_message)
        txt_clip = None

    audio_segment = None
    actual_duration = 0.0
    if process_mode > 1:
        try:
            segment_audio_path = f"segment_{i}_voiceover.wav"
            desired_duration = entry["end"] - entry["start"]
            desired_speed = entry['speed'] #calibrated_speed(entry['translated'], desired_duration)

            speaker = entry.get("speaker", "SPEAKER_00")
            speaker_wav_path = f"speaker_{speaker}_sample.wav"

            if process_mode > 2 and speaker_wav_path and os.path.exists(speaker_wav_path) and target_language in tts_model.synthesizer.tts_model.language_manager.name_to_id.keys():
                generate_voiceover_clone(entry['translated'], tts_model, desired_speed, target_language, speaker_wav_path, segment_audio_path)
            else:
                generate_voiceover_OpenAI(entry['translated'], target_language, desired_speed, segment_audio_path)

            if not segment_audio_path or not os.path.exists(segment_audio_path):
                raise FileNotFoundError(f"Voiceover file not generated at: {segment_audio_path}")

            audio_clip = AudioFileClip(segment_audio_path)
            actual_duration = audio_clip.duration

            audio_segment = audio_clip  # Do not set start here, alignment happens later

        except Exception as e:
            err = f"❌ Failed to generate audio segment for entry {i}: {e}"
            logger.error(err)
            error_message = error_message + " | " + err if error_message else err
            audio_segment = None

    return i, txt_clip, audio_segment, actual_duration, error_message


def add_transcript_voiceover(video_path, translated_json, output_path, process_mode, target_language="en", speaker_sample_paths=None, background_audio_path="background_segments.wav"):

    video = VideoFileClip(video_path)
    font_path = "./NotoSansSC-Regular.ttf"

    text_clips = []
    audio_segments = []
    actual_durations = []
    error_messages = []

    if process_mode > 2:
        global tts_model
        if tts_model is None:
            try:
                print("πŸ”„ Loading XTTS model...")
                from TTS.api import TTS
                tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts")
                print("βœ… XTTS model loaded successfully.")
            except Exception as e:
                print("❌ Error loading XTTS model:")
                traceback.print_exc()
                return f"Error loading XTTS model: {e}"

    with concurrent.futures.ThreadPoolExecutor() as executor:
#        futures = [executor.submit(process_entry, entry, i, tts_model, video.w, video.h, process_mode, target_language, font_path, speaker_sample_paths)
#                   # for i, entry in enumerate(translated_json)]

#        results = []
#        for future in concurrent.futures.as_completed(futures):
#            try:
#                i, txt_clip, audio_segment, actual_duration, error = future.result()
#                results.append((i, txt_clip, audio_segment, actual_duration))
#                if error:
#                    error_messages.append(f"[Entry {i}] {error}")
#            except Exception as e:
#                err = f"❌ Unexpected error in future result: {e}"
#                error_messages.append(err)
#        Use dict as a placeholder, any failure will leave a (None, None, 0) 
        futures = {
            executor.submit(
                process_entry, entry, idx, tts_model, video.w, video.h,
                process_mode, target_language, font_path, speaker_sample_paths
            ): idx
            for idx, entry in enumerate(translated_json)
        }
        
        # Give each entry a placeholder first to prevent overstepping boundaries
        result_map = {idx: (None, None, 0) for idx in range(len(translated_json))}
        
        for future in concurrent.futures.as_completed(futures):
            idx = futures[future]    
            try:
                _idx, txt, aud, dur, err = future.result()
                result_map[idx] = (txt, aud, dur)
                if err:
                    error_messages.append(f"[Entry {idx}] {err}")
            except Exception as e:
                # Threads that throw errors also need to take up space to prevent the list index from going out of range
                error_messages.append(f"[Entry {idx}] unexpected error: {e}")

#     results.sort(key=lambda x: x[0])
#     text_clips = [clip for _, clip, _, _ in results if clip]
#     generated_durations = [dur for _, _, _, dur in results if dur > 0]

    # Sort and filter together
    results.sort(key=lambda x: x[0])
    filtered = [(translated_json[i], txt, aud, dur) for i, txt, aud, dur in results if dur > 0]
    
    translated_json = [entry for entry, _, _, _ in filtered]
    generated_durations = [dur for _, _, _, dur in filtered]
    
    # Align using optimization (modifies translated_json in-place)
    if generated_durations:
        translated_json = solve_optimal_alignment(translated_json, generated_durations, video.duration)
    else:
        logger.warning("No generated audio; skip alignment optimisation.")

#    Set aligned timings
#    audio_segments = []
#    for i, entry in enumerate(translated_json):
#        segment = results[i][2]  # AudioFileClip
#        if segment:
#            segment = segment.set_start(entry['start']).set_duration(entry['end'] - entry['start'])
#            audio_segments.append(segment)
    audio_segments = []
    for i, entry in enumerate(translated_json):
        _, seg, _dur = result_map[i]    # seg is AudioFileClip
        if seg:
            audio_segments.append(
                seg.set_start(entry["start"]).set_duration(entry["end"] - entry["start"])
            )

    final_video = CompositeVideoClip([video] + text_clips)

    if process_mode > 1 and audio_segments:
        try:
            voice_audio = CompositeAudioClip(audio_segments).set_duration(video.duration)

            if background_audio_path and os.path.exists(background_audio_path):
                background_audio = AudioFileClip(background_audio_path).set_duration(video.duration)
                final_audio = CompositeAudioClip([voice_audio, background_audio])
            else:
                final_audio = voice_audio

            final_video = final_video.set_audio(final_audio)

        except Exception as e:
            print(f"❌ Failed to set audio: {e}")

    final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")

    return error_messages

def generate_voiceover_OpenAI(full_text, language, desired_speed, output_audio_path):
    """
    Generate voiceover from translated text for a given language using OpenAI TTS API.
    """
    # Define the voice based on the language (for now, use 'alloy' as default)
    voice = "alloy"  # Adjust based on language if needed

    # Define the model (use tts-1 for real-time applications)
    model = "tts-1"

    max_retries = 3
    retry_count = 0

    while retry_count < max_retries:
        try:
            # Create the speech using OpenAI TTS API
            response = client.audio.speech.create(
                model=model,
                voice=voice,
                input=full_text,
                speed=desired_speed
            )
            # Save the audio to the specified path
            with open(output_audio_path, 'wb') as f:
                for chunk in response.iter_bytes():
                    f.write(chunk)
            logging.info(f"Voiceover generated successfully for {output_audio_path}")
            break

        except Exception as e:
            retry_count += 1
            logging.error(f"Error generating voiceover (retry {retry_count}/{max_retries}): {e}")
            time.sleep(5)  # Wait 5 seconds before retrying

    if retry_count == max_retries:
        raise ValueError(f"Failed to generate voiceover after {max_retries} retries.")

def generate_voiceover_clone(full_text, tts_model, desired_speed, target_language, speaker_wav_path, output_audio_path):
    try:

        tts_model.tts_to_file(
            text=full_text,
            speaker_wav=speaker_wav_path,
            language=target_language,
            file_path=output_audio_path,
            speed=desired_speed,
            split_sentences=True
        )
        msg = (
            f"βœ… Voice cloning completed successfully. "
            f"[Speaker Wav: {speaker_wav_path}] [Speed: {desired_speed}]"
        )
        logger.info(msg)
        return output_audio_path, msg, None

    except Exception as e:
        generate_voiceover_OpenAI(full_text, target_language, desired_speed, output_audio_path)
        err_msg = f"❌ An error occurred: {str(e)}, fallback to premium voice"
        logger.error(traceback.format_exc())
        return None, err_msg, err_msg

def apply_adaptive_speed(translated_json_raw, source_language, target_language, k=3.0, default_prior_speed=5.0):
    """
    Adds `speed` (relative, 1.0 = normal speed) and `target_duration` (sec) to each segment
    using shrinkage-based estimation, language stretch ratios, and optional style modifiers.
    Speeds are clamped to [0.85, 1.7] to avoid unnatural TTS behavior.
    """
    translated_json = copy.deepcopy(translated_json_raw)

    # Prior average speech speeds by (category, target language)
    priors = {
        ("drama", "en"): 5.0,
        ("drama", "zh"): 4.5,
        ("tutorial", "en"): 5.2,
        ("tutorial", "zh"): 4.8,
        ("shortplay", "en"): 5.1,
        ("shortplay", "zh"): 4.7,
    }

    # Adjustment ratio based on language pair (source β†’ target)
    lang_ratio = {
        ("zh", "en"): 0.85,
        ("en", "zh"): 1.15,
        ("zh", "jp"): 1.05,
        ("en", "ja"): 0.9,
    }

    # Optional style modulation factor
    style_modifiers = {
        "dramatic": 0.9,
        "urgent": 1.1,
        "neutral": 1.0
    }

    for idx, entry in enumerate(translated_json):
        start, end = float(entry.get("start", 0)), float(entry.get("end", 0))
        duration = max(0.1, end - start)

        original_text = entry.get("original", "")
        translated_text = entry.get("translated", "")
        category = entry.get("category", "drama")
        source_lang = source_language
        target_lang = target_language
        style = entry.get("style", "neutral").lower()

        # Observed speed from original
        base_text = original_text or translated_text
        obs_speed = len(base_text) / duration

        # Prior speed
        prior_speed = priors.get((category, target_lang), default_prior_speed)

        # Shrinkage
        shrink_speed = (duration * obs_speed + k * prior_speed) / (duration + k)

        # Language pacing adjustment
        ratio = lang_ratio.get((source_lang, target_lang), 1.0)
        adjusted_speed = shrink_speed * ratio

        # Style modulation
        mod = style_modifiers.get(style, 1.0)
        adjusted_speed *= mod

        # Final relative speed (normalized to prior)
        relative_speed = adjusted_speed / prior_speed

        # Clamp relative speed to [0.85, 1.7]
        relative_speed = max(0.85, min(1.7, relative_speed))

        # Compute target duration for synthesis
        target_chars = len(translated_text)
        target_duration = round(target_chars / adjusted_speed, 2)

        # Logging
        logger.info(
            f"[Segment {idx}] dur={duration:.2f}s | obs_speed={obs_speed:.2f} | prior={prior_speed:.2f} | "
            f"shrinked={shrink_speed:.2f} | lang_ratio={ratio} | style_mod={mod} | "
            f"adj_speed={adjusted_speed:.2f} | rel_speed={relative_speed:.2f} | "
            f"target_dur={target_duration:.2f}s"
        )

        entry["speed"] = round(relative_speed, 3)
        entry["target_duration"] = target_duration

    return translated_json

def calibrated_speed(text, desired_duration):
    """
    Compute a speed factor to help TTS fit audio into desired duration,
    using a simple truncated linear function of characters per second.
    """
    char_count = len(text.strip())
    if char_count == 0 or desired_duration <= 0:
        return 1.0  # fallback

    cps = char_count / desired_duration  # characters per second

    # Truncated linear mapping
    if cps < 14:
        return 1.0
    elif cps > 25.2:
        return 1.7
    else:
        slope = (1.7 - 1.0) / (25.2 - 14)
        return 1.0 + slope * (cps - 14)

def upload_and_manage(file, target_language, process_mode):
    if file is None:
        logger.info("No file uploaded. Please upload a video/audio file.")
        return None, [], None, "No file uploaded. Please upload a video/audio file."

    try:
        start_time = time.time()  # Start the timer
        logger.info(f"Started processing file: {file.name}")

        # Define paths for audio and output files
        audio_path = "audio.wav"
        output_video_path = "output_video.mp4"
        voiceover_path = "voiceover.wav"
        logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")

        # Step 1: Transcribe audio from uploaded media file and get timestamps
        logger.info("Transcribing audio...")
        transcription_json, source_language = transcribe_video_with_speakers(file.name)
        logger.info(f"Transcription completed. Detected source language: {source_language}")

        translated_json_raw = punctuate_and_translate_parallel(transcription_json, source_language, target_language, openai_client = client)
        # Step 2: Translate the transcription
        # logger.info(f"Translating transcription from {source_language} to {target_language}...")
        # translated_json_raw = translate_text(transcription_json_merged, )
        logger.info(f"Translation completed. Number of translated segments: {len(translated_json_raw)}")

        translated_json = apply_adaptive_speed(translated_json_raw, source_language, target_language)
        
        # Step 3: Add transcript to video based on timestamps
        logger.info("Adding translated transcript to video...")
        add_transcript_voiceover(file.name, translated_json, output_video_path, process_mode, target_language)
        logger.info(f"Transcript added to video. Output video saved at {output_video_path}")

        # Convert translated JSON into a format for the editable table
        logger.info("Converting translated JSON into editable table format...")
        editable_table = [
            [float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
            for entry in translated_json
        ]

        # Calculate elapsed time
        elapsed_time = time.time() - start_time
        elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
        logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")

        return source_language, editable_table, output_video_path, elapsed_time_display

    except Exception as e:
        logger.error(f"An error occurred: {str(e)}")
        return None, [], None, f"An error occurred: {str(e)}"

# Gradio Interface with Tabs
def build_interface():
    with gr.Blocks(css=css) as demo:
        gr.Markdown("## Video Localization")
        with gr.Row():
            with gr.Column(scale=4):
                file_input = gr.File(label="Upload Video/Audio File")
                language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language")
                source_language_display = gr.Textbox(label="Detected Source Language", interactive=False)
                process_mode = gr.Radio(
                    choices=[("Transcription Only", 1), ("Transcription with Premium Voice", 2), ("Transcription with Voice Clone", 3)],
                    label="Choose Processing Type",
                    value=1
                )
                submit_button = gr.Button("Post and Process")

            with gr.Column(scale=8):
                gr.Markdown("## Edit Translations")
                
                # Editable JSON Data
                editable_table = gr.Dataframe(
                    value=[],  # Default to an empty list to avoid undefined values
                    headers=["start", "original", "translated", "end", "speaker"],
                    datatype=["number", "str", "str", "number", "str"],
                    row_count=1,  # Initially empty
                    col_count=5,
                    interactive=[False, True, True, False, False],  # Control editability
                    label="Edit Translations",
                    wrap=True  # Enables text wrapping if supported
                )
                save_changes_button = gr.Button("Save Changes")
                processed_video_output = gr.File(label="Download Processed Video", interactive=True)  # Download button
                elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)

            with gr.Column(scale=1):
                gr.Markdown("**Feedback**")
                feedback_input = gr.Textbox(
                    placeholder="Leave your feedback here...",
                    label=None,
                    lines=3,
                )
                feedback_btn = gr.Button("Submit Feedback")
                response_message = gr.Textbox(label=None, lines=1, interactive=False)
                db_download = gr.File(label="Download Database File", visible=False)
            
                # Link the feedback handling
                def feedback_submission(feedback):
                    message, file_path = handle_feedback(feedback)
                    if file_path:
                        return message, gr.update(value=file_path, visible=True)
                    return message, gr.update(visible=False)            

            save_changes_button.click(
                update_translations, 
                inputs=[file_input, editable_table, source_language_display, language_input, process_mode],
                outputs=[processed_video_output, elapsed_time_display]
            )

            submit_button.click(
                upload_and_manage, 
                inputs=[file_input, language_input, process_mode], 
                outputs=[source_language_display, editable_table, processed_video_output, elapsed_time_display]
            )

            # Connect submit button to save_feedback_db function
            feedback_btn.click(
                feedback_submission, 
                inputs=[feedback_input], 
                outputs=[response_message, db_download]
            )

    return demo

tts_model = None
# Launch the Gradio interface
demo = build_interface()
demo.launch()