Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -131,7 +131,7 @@ def handle_feedback(feedback):
|
|
131 |
conn.commit()
|
132 |
return "Thank you for your feedback!", None
|
133 |
|
134 |
-
def segment_background_audio(audio_path, background_audio_path="background_segments.wav"
|
135 |
"""
|
136 |
Uses Demucs to separate audio and extract background (non-vocal) parts.
|
137 |
Merges drums, bass, and other stems into a single background track.
|
@@ -148,7 +148,6 @@ def segment_background_audio(audio_path, background_audio_path="background_segme
|
|
148 |
stem_dir = os.path.join("separated", "htdemucs", filename)
|
149 |
|
150 |
# Step 3: Load and merge background stems
|
151 |
-
vocals = AudioSegment.from_wav(os.path.join(stem_dir, "vocals.wav"))
|
152 |
drums = AudioSegment.from_wav(os.path.join(stem_dir, "drums.wav"))
|
153 |
bass = AudioSegment.from_wav(os.path.join(stem_dir, "bass.wav"))
|
154 |
other = AudioSegment.from_wav(os.path.join(stem_dir, "other.wav"))
|
@@ -157,15 +156,34 @@ def segment_background_audio(audio_path, background_audio_path="background_segme
|
|
157 |
|
158 |
# Step 4: Export the merged background
|
159 |
background.export(background_audio_path, format="wav")
|
160 |
-
|
161 |
-
return background_audio_path, speech_audio_path
|
162 |
|
163 |
-
def
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
def transcribe_video_with_speakers(video_path):
|
171 |
# Extract audio from video
|
@@ -174,7 +192,7 @@ def transcribe_video_with_speakers(video_path):
|
|
174 |
video.audio.write_audiofile(audio_path)
|
175 |
logger.info(f"Audio extracted from video: {audio_path}")
|
176 |
|
177 |
-
segment_result
|
178 |
print(f"Saved non-speech (background) audio to local")
|
179 |
|
180 |
# Set up device
|
@@ -187,7 +205,7 @@ def transcribe_video_with_speakers(video_path):
|
|
187 |
logger.info("WhisperX model loaded")
|
188 |
|
189 |
# Transcribe
|
190 |
-
result = model.transcribe(
|
191 |
logger.info("Audio transcription completed")
|
192 |
|
193 |
# Get the detected language
|
@@ -195,12 +213,12 @@ def transcribe_video_with_speakers(video_path):
|
|
195 |
logger.debug(f"Detected language: {detected_language}")
|
196 |
# Alignment
|
197 |
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
198 |
-
result = whisperx.align(result["segments"], model_a, metadata,
|
199 |
logger.info("Transcription alignment completed")
|
200 |
|
201 |
# Diarization (works independently of Whisper model size)
|
202 |
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
|
203 |
-
diarize_segments = diarize_model(
|
204 |
logger.info("Speaker diarization completed")
|
205 |
|
206 |
# Assign speakers
|
@@ -220,84 +238,31 @@ def transcribe_video_with_speakers(video_path):
|
|
220 |
}
|
221 |
for segment in result["segments"]
|
222 |
]
|
223 |
-
|
224 |
# Collect audio for each speaker
|
225 |
speaker_audio = {}
|
226 |
-
|
227 |
-
|
228 |
-
for idx, segment in enumerate(result["segments"]):
|
229 |
speaker = segment["speaker"]
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
if speaker not in speaker_audio:
|
235 |
-
speaker_audio[speaker] = [(start, end)]
|
236 |
-
else:
|
237 |
-
speaker_audio[speaker].append((start, end))
|
238 |
-
|
239 |
-
logger.debug(f"Segment {idx}: Added to speaker {speaker} [{start:.2f}s → {end:.2f}s]")
|
240 |
-
else:
|
241 |
-
logger.warning(f"⚠️ Segment {idx} discarded: invalid duration ({start:.2f}s → {end:.2f}s)")
|
242 |
-
|
243 |
# Collapse and truncate speaker audio
|
244 |
speaker_sample_paths = {}
|
245 |
-
audio_clip = AudioFileClip(
|
246 |
-
|
247 |
-
logger.info(f"🔎 Found {len(speaker_audio)} speakers with valid segments. Start creating speaker samples...")
|
248 |
-
|
249 |
for speaker, segments in speaker_audio.items():
|
250 |
-
logger.info(f"🔹 Speaker {speaker}: {len(segments)} valid segments")
|
251 |
-
|
252 |
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
|
253 |
-
|
254 |
-
logger.warning(f"⚠️ No valid audio clips for speaker {speaker}. Skipping sample creation.")
|
255 |
-
continue
|
256 |
-
|
257 |
-
if len(speaker_clips) == 1:
|
258 |
-
logger.debug(f"Speaker {speaker}: Only one clip, skipping concatenation.")
|
259 |
-
combined_clip = speaker_clips[0]
|
260 |
-
else:
|
261 |
-
logger.debug(f"Speaker {speaker}: Concatenating {len(speaker_clips)} clips.")
|
262 |
-
combined_clip = concatenate_audioclips(speaker_clips)
|
263 |
-
|
264 |
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
|
265 |
-
logger.debug(f"Speaker {speaker}: Truncated to {truncated_clip.duration:.2f} seconds.")
|
266 |
-
|
267 |
-
# Step 1: Get audio array from the clip
|
268 |
-
fps = 16000 # target sampling rate
|
269 |
-
audio_array = truncated_clip.to_soundarray(fps=fps)
|
270 |
-
|
271 |
-
if audio_array.ndim == 2:
|
272 |
-
logger.debug(f"Speaker {speaker}: Stereo detected, converting to mono.")
|
273 |
-
audio_array = np.mean(audio_array, axis=1)
|
274 |
-
|
275 |
-
# Step 2: Apply denoising
|
276 |
-
denoised_audio_array = denoise_audio_array(audio_array, sr=fps)
|
277 |
-
|
278 |
-
if isinstance(denoised_audio_array, (list, tuple)):
|
279 |
-
logger.debug(f"Speaker {speaker}: Denoising returned a sequence, concatenating.")
|
280 |
-
# Concatenate the arrays along the first axis (samples)
|
281 |
-
try:
|
282 |
-
denoised_audio_array = np.concatenate(denoised_audio_array, axis=0)
|
283 |
-
except ValueError as e:
|
284 |
-
logger.error(f"Failed to concatenate denoised audio segments for {speaker}: {e}")
|
285 |
-
# Decide how to handle this - maybe skip saving the sample?
|
286 |
-
continue # Skip saving this sample if concatenation fails
|
287 |
-
|
288 |
-
# Step 3: Save denoised audio directly
|
289 |
sample_path = f"speaker_{speaker}_sample.wav"
|
290 |
-
|
291 |
-
|
292 |
speaker_sample_paths[speaker] = sample_path
|
293 |
-
logger.info(f"
|
294 |
-
|
295 |
-
#
|
296 |
-
logger.info("🧹 Closing audio clip and removing temporary files...")
|
297 |
video.close()
|
298 |
audio_clip.close()
|
299 |
-
os.remove(
|
300 |
-
logger.info("✅ Finished processing all speaker samples.")
|
301 |
|
302 |
return transcript_with_speakers, detected_language
|
303 |
|
|
|
131 |
conn.commit()
|
132 |
return "Thank you for your feedback!", None
|
133 |
|
134 |
+
def segment_background_audio(audio_path, background_audio_path="background_segments.wav"):
|
135 |
"""
|
136 |
Uses Demucs to separate audio and extract background (non-vocal) parts.
|
137 |
Merges drums, bass, and other stems into a single background track.
|
|
|
148 |
stem_dir = os.path.join("separated", "htdemucs", filename)
|
149 |
|
150 |
# Step 3: Load and merge background stems
|
|
|
151 |
drums = AudioSegment.from_wav(os.path.join(stem_dir, "drums.wav"))
|
152 |
bass = AudioSegment.from_wav(os.path.join(stem_dir, "bass.wav"))
|
153 |
other = AudioSegment.from_wav(os.path.join(stem_dir, "other.wav"))
|
|
|
156 |
|
157 |
# Step 4: Export the merged background
|
158 |
background.export(background_audio_path, format="wav")
|
159 |
+
return background_audio_path
|
|
|
160 |
|
161 |
+
# def segment_background_audio(audio_path, background_audio_path="background_segments.wav"):
|
162 |
+
# pipeline = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=hf_api_key)
|
163 |
+
# vad_result = pipeline(audio_path)
|
164 |
+
|
165 |
+
# full_audio = AudioSegment.from_wav(audio_path)
|
166 |
+
# full_duration_sec = len(full_audio) / 1000.0
|
167 |
+
|
168 |
+
# current_time = 0.0
|
169 |
+
# result_audio = AudioSegment.empty()
|
170 |
+
|
171 |
+
# for segment in vad_result.itersegments():
|
172 |
+
# # Background segment before the speech
|
173 |
+
# if current_time < segment.start:
|
174 |
+
# bg = full_audio[int(current_time * 1000):int(segment.start * 1000)]
|
175 |
+
# result_audio += bg
|
176 |
+
# # Add silence for the speech duration
|
177 |
+
# silence_duration = segment.end - segment.start
|
178 |
+
# result_audio += AudioSegment.silent(duration=int(silence_duration * 1000))
|
179 |
+
# current_time = segment.end
|
180 |
+
|
181 |
+
# # Handle any remaining background after the last speech
|
182 |
+
# if current_time < full_duration_sec:
|
183 |
+
# result_audio += full_audio[int(current_time * 1000):]
|
184 |
+
|
185 |
+
# result_audio.export(background_audio_path, format="wav")
|
186 |
+
# return background_audio_path
|
187 |
|
188 |
def transcribe_video_with_speakers(video_path):
|
189 |
# Extract audio from video
|
|
|
192 |
video.audio.write_audiofile(audio_path)
|
193 |
logger.info(f"Audio extracted from video: {audio_path}")
|
194 |
|
195 |
+
segment_result = segment_background_audio(audio_path)
|
196 |
print(f"Saved non-speech (background) audio to local")
|
197 |
|
198 |
# Set up device
|
|
|
205 |
logger.info("WhisperX model loaded")
|
206 |
|
207 |
# Transcribe
|
208 |
+
result = model.transcribe(audio_path, chunk_size=6, print_progress = True)
|
209 |
logger.info("Audio transcription completed")
|
210 |
|
211 |
# Get the detected language
|
|
|
213 |
logger.debug(f"Detected language: {detected_language}")
|
214 |
# Alignment
|
215 |
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
216 |
+
result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
|
217 |
logger.info("Transcription alignment completed")
|
218 |
|
219 |
# Diarization (works independently of Whisper model size)
|
220 |
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
|
221 |
+
diarize_segments = diarize_model(audio_path)
|
222 |
logger.info("Speaker diarization completed")
|
223 |
|
224 |
# Assign speakers
|
|
|
238 |
}
|
239 |
for segment in result["segments"]
|
240 |
]
|
241 |
+
|
242 |
# Collect audio for each speaker
|
243 |
speaker_audio = {}
|
244 |
+
for segment in result["segments"]:
|
|
|
|
|
245 |
speaker = segment["speaker"]
|
246 |
+
if speaker not in speaker_audio:
|
247 |
+
speaker_audio[speaker] = []
|
248 |
+
speaker_audio[speaker].append((segment["start"], segment["end"]))
|
249 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
# Collapse and truncate speaker audio
|
251 |
speaker_sample_paths = {}
|
252 |
+
audio_clip = AudioFileClip(audio_path)
|
|
|
|
|
|
|
253 |
for speaker, segments in speaker_audio.items():
|
|
|
|
|
254 |
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
|
255 |
+
combined_clip = concatenate_audioclips(speaker_clips)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
sample_path = f"speaker_{speaker}_sample.wav"
|
258 |
+
truncated_clip.write_audiofile(sample_path)
|
|
|
259 |
speaker_sample_paths[speaker] = sample_path
|
260 |
+
logger.info(f"Created sample for {speaker}: {sample_path}")
|
261 |
+
|
262 |
+
# Clean up
|
|
|
263 |
video.close()
|
264 |
audio_clip.close()
|
265 |
+
os.remove(audio_path)
|
|
|
266 |
|
267 |
return transcript_with_speakers, detected_language
|
268 |
|