Dionyssos's picture
audionar
a77742c
# -*- coding: utf-8 -*-
import typing
import types # fusion of forward() of Wav2Vec2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
from tts import StyleTTS2
import audresample
import json
import re
import unicodedata
import textwrap
import nltk
from num2words import num2words
from num2word_greek.numbers2words import convert_numbers
from audionar import VitsModel, VitsTokenizer
nltk.download('punkt', download_dir='./')
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')
device = 'cpu'
def fix_vocals(text, lang='ron'):
# Longer phrases should come before shorter ones to prevent partial matches.
ron_replacements = {
'ţ': 'ț',
'ț': 'ts',
'î': 'u',
'â': 'a',
'ş': 's',
'w': 'oui',
'k': 'c',
'l': 'll',
# Math symbols
'sqrt': ' rădăcina pătrată din ',
'^': ' la puterea ',
'+': ' plus ',
' - ': ' minus ', # only replace if standalone so to not say minus if is a-b-c
'*': ' ori ', # times
'/': ' împărțit la ', # divided by
'=': ' egal cu ', # equals
'pi': ' pi ',
'<': ' mai mic decât ',
'>': ' mai mare decât',
'%': ' la sută ', # percent (from previous)
'(': ' paranteză deschisă ',
')': ' paranteză închisă ',
'[': ' paranteză pătrată deschisă ',
']': ' paranteză pătrată închisă ',
'{': ' acoladă deschisă ',
'}': ' acoladă închisă ',
'≠': ' nu este egal cu ',
'≤': ' mai mic sau egal cu ',
'≥': ' mai mare sau egal cu ',
'≈': ' aproximativ ',
'∞': ' infinit ',
'€': ' euro ',
'$': ' dolar ',
'£': ' liră ',
'&': ' și ', # and
'@': ' la ', # at
'#': ' diez ', # hash
'∑': ' sumă ',
'∫': ' integrală ',
'√': ' rădăcina pătrată a ', # more generic square root
}
eng_replacements = {
'wik': 'weaky',
'sh': 'ss',
'ch': 'ttss',
'oo': 'oeo',
# Math symbols for English
'sqrt': ' square root of ',
'^': ' to the power of ',
'+': ' plus ',
' - ': ' minus ',
'*': ' times ',
' / ': ' divided by ',
'=': ' equals ',
'pi': ' pi ',
'<': ' less than ',
'>': ' greater than ',
# Additional common math symbols from previous list
'%': ' percent ',
'(': ' open parenthesis ',
')': ' close parenthesis ',
'[': ' open bracket ',
']': ' close bracket ',
'{': ' open curly brace ',
'}': ' close curly brace ',
'∑': ' sum ',
'∫': ' integral ',
'√': ' square root of ',
'≠': ' not equals ',
'≤': ' less than or equals ',
'≥': ' greater than or equals ',
'≈': ' approximately ',
'∞': ' infinity ',
'€': ' euro ',
'$': ' dollar ',
'£': ' pound ',
'&': ' and ',
'@': ' at ',
'#': ' hash ',
}
serbian_replacements = {
'rn': 'rrn',
'ć': 'č',
'c': 'č',
'đ': 'd',
'j': 'i',
'l': 'lll',
'w': 'v',
# https://huggingface.co/facebook/mms-tts-rmc-script_latin
'sqrt': 'kvadratni koren iz',
'^': ' na stepen ',
'+': ' plus ',
' - ': ' minus ',
'*': ' puta ',
' / ': ' podeljeno sa ',
'=': ' jednako ',
'pi': ' pi ',
'<': ' manje od ',
'>': ' veće od ',
'%': ' procenat ',
'(': ' otvorena zagrada ',
')': ' zatvorena zagrada ',
'[': ' otvorena uglasta zagrada ',
']': ' zatvorena uglasta zagrada ',
'{': ' otvorena vitičasta zagrada ',
'}': ' zatvorena vitičasta zagrada ',
'∑': ' suma ',
'∫': ' integral ',
'√': ' kvadratni koren ',
'≠': ' nije jednako ',
'≤': ' manje ili jednako od ',
'≥': ' veće ili jednako od ',
'≈': ' približno ',
'∞': ' beskonačnost ',
'€': ' evro ',
'$': ' dolar ',
'£': ' funta ',
'&': ' i ',
'@': ' et ',
'#': ' taraba ',
# Others
# 'rn': 'rrn',
# 'ć': 'č',
# 'c': 'č',
# 'đ': 'd',
# 'l': 'le',
# 'ij': 'i',
# 'ji': 'i',
# 'j': 'i',
# 'služ': 'sloooozz', # 'službeno'
# 'suver': 'siuveeerra', # 'suverena'
# 'država': 'dirrezav', # 'država'
# 'iči': 'ici', # 'Graniči'
# 's ': 'se', # a s with space
# 'q': 'ku',
# 'w': 'aou',
# 'z': 's',
# "š": "s",
# 'th': 'ta',
# 'v': 'vv',
# "ć": "č",
# "đ": "ď",
# "lj": "ľ",
# "nj": "ň",
# "ž": "z",
# "c": "č"
}
deu_replacements = {
'sch': 'sh',
'ch': 'kh',
'ie': 'ee',
'ei': 'ai',
'ä': 'ae',
'ö': 'oe',
'ü': 'ue',
'ß': 'ss',
# Math symbols for German
'sqrt': ' Quadratwurzel aus ',
'^': ' hoch ',
'+': ' plus ',
' - ': ' minus ',
'*': ' mal ',
' / ': ' geteilt durch ',
'=': ' gleich ',
'pi': ' pi ',
'<': ' kleiner als ',
'>': ' größer als',
# Additional common math symbols from previous list
'%': ' prozent ',
'(': ' Klammer auf ',
')': ' Klammer zu ',
'[': ' eckige Klammer auf ',
']': ' eckige Klammer zu ',
'{': ' geschweifte Klammer auf ',
'}': ' geschweifte Klammer zu ',
'∑': ' Summe ',
'∫': ' Integral ',
'√': ' Quadratwurzel ',
'≠': ' ungleich ',
'≤': ' kleiner oder gleich ',
'≥': ' größer oder gleich ',
'≈': ' ungefähr ',
'∞': ' unendlich ',
'€': ' euro ',
'$': ' dollar ',
'£': ' pfund ',
'&': ' und ',
'@': ' at ', # 'Klammeraffe' is also common but 'at' is simpler
'#': ' raute ',
}
fra_replacements = {
# French specific phonetic replacements (add as needed)
# e.g., 'ç': 's', 'é': 'e', etc.
'w': 'v',
# Math symbols for French
'sqrt': ' racine carrée de ',
'^': ' à la puissance ',
'+': ' plus ',
' - ': ' moins ', # tiré ;
'*': ' fois ',
' / ': ' divisé par ',
'=': ' égale ',
'pi': ' pi ',
'<': ' inférieur à ',
'>': ' supérieur à ',
# Add more common math symbols as needed for French
'%': ' pour cent ',
'(': ' parenthèse ouverte ',
')': ' parenthèse fermée ',
'[': ' crochet ouvert ',
']': ' crochet fermé ',
'{': ' accolade ouverte ',
'}': ' accolade fermée ',
'∑': ' somme ',
'∫': ' intégrale ',
'√': ' racine carrée ',
'≠': ' n\'égale pas ',
'≤': ' inférieur ou égal à ',
'≥': ' supérieur ou égal à ',
'≈': ' approximativement ',
'∞': ' infini ',
'€': ' euro ',
'$': ' dollar ',
'£': ' livre ',
'&': ' et ',
'@': ' arobase ',
'#': ' dièse ',
}
hun_replacements = {
# Hungarian specific phonetic replacements (add as needed)
# e.g., 'á': 'a', 'é': 'e', etc.
'ch': 'ts',
'cs': 'tz',
'g': 'gk',
'w': 'v',
'z': 'zz',
# Math symbols for Hungarian
'sqrt': ' négyzetgyök ',
'^': ' hatvány ',
'+': ' plusz ',
' - ': ' mínusz ',
'*': ' szorozva ',
' / ': ' osztva ',
'=': ' egyenlő ',
'pi': ' pi ',
'<': ' kisebb mint ',
'>': ' nagyobb mint ',
# Add more common math symbols as needed for Hungarian
'%': ' százalék ',
'(': ' nyitó zárójel ',
')': ' záró zárójel ',
'[': ' nyitó szögletes zárójel ',
']': ' záró szögletes zárójel ',
'{': ' nyitó kapcsos zárójel ',
'}': ' záró kapcsos zárójel ',
'∑': ' szumma ',
'∫': ' integrál ',
'√': ' négyzetgyök ',
'≠': ' nem egyenlő ',
'≤': ' kisebb vagy egyenlő ',
'≥': ' nagyobb vagy egyenlő ',
'≈': ' körülbelül ',
'∞': ' végtelen ',
'€': ' euró ',
'$': ' dollár ',
'£': ' font ',
'&': ' és ',
'@': ' kukac ',
'#': ' kettőskereszt ',
}
grc_replacements = {
# Ancient Greek specific phonetic replacements (add as needed)
# These are more about transliterating Greek letters if they are in the input text.
# Math symbols for Ancient Greek (literal translations)
'sqrt': ' τετραγωνικὴ ῥίζα ',
'^': ' εἰς τὴν δύναμιν ',
'+': ' σὺν ',
' - ': ' χωρὶς ',
'*': ' πολλάκις ',
' / ': ' διαιρέω ',
'=': ' ἴσον ',
'pi': ' πῖ ',
'<': ' ἔλαττον ',
'>': ' μεῖζον ',
# Add more common math symbols as needed for Ancient Greek
'%': ' τοῖς ἑκατόν ', # tois hekaton - 'of the hundred'
'(': ' ἀνοικτὴ παρένθεσις ',
')': ' κλειστὴ παρένθεσις ',
'[': ' ἀνοικτὴ ἀγκύλη ',
']': ' κλειστὴ ἀγκύλη ',
'{': ' ἀνοικτὴ σγουρὴ ἀγκύλη ',
'}': ' κλειστὴ σγουρὴ ἀγκύλη ',
'∑': ' ἄθροισμα ',
'∫': ' ὁλοκλήρωμα ',
'√': ' τετραγωνικὴ ῥίζα ',
'≠': ' οὐκ ἴσον ',
'≤': ' ἔλαττον ἢ ἴσον ',
'≥': ' μεῖζον ἢ ἴσον ',
'≈': ' περίπου ',
'∞': ' ἄπειρον ',
'€': ' εὐρώ ',
'$': ' δολάριον ',
'£': ' λίρα ',
'&': ' καὶ ',
'@': ' ἀτ ', # at
'#': ' δίεση ', # hash
}
# Select the appropriate replacement dictionary based on the language
replacements_map = {
'grc': grc_replacements,
'ron': ron_replacements,
'eng': eng_replacements,
'deu': deu_replacements,
'fra': fra_replacements,
'hun': hun_replacements,
'rmc-script_latin': serbian_replacements,
}
current_replacements = replacements_map.get(lang)
if current_replacements:
# Sort replacements by length of the key in descending order.
# This is crucial for correctly replacing multi-character strings (like 'sqrt', 'sch')
# before their shorter substrings ('s', 'ch', 'q', 'r', 't').
sorted_replacements = sorted(current_replacements.items(), key=lambda item: len(item[0]), reverse=True)
for old, new in sorted_replacements:
text = text.replace(old, new)
return text
else:
# If the language is not supported, return the original text
print(f"Warning: Language '{lang}' not supported for text replacement. Returning original text.")
return text
def _num2words(text='01234', lang=None):
if lang == 'grc':
return convert_numbers(text)
return num2words(text, lang=lang) # HAS TO BE kwarg lang=lang
def transliterate_number(number_string,
lang=None):
if lang == 'rmc-script_latin':
lang = 'sr'
exponential_pronoun = ' puta deset na stepen od '
comma = ' tačka '
elif lang == 'ron':
lang = 'ro'
exponential_pronoun = ' tízszer a erejéig '
comma = ' virgulă '
elif lang == 'hun':
lang = 'hu'
exponential_pronoun = ' tízszer a erejéig '
comma = ' virgula '
elif lang == 'deu':
exponential_pronoun = ' mal zehn hoch '
comma = ' komma '
elif lang == 'fra':
lang = 'fr'
exponential_pronoun = ' puissance '
comma = 'virgule'
elif lang == 'grc':
exponential_pronoun = ' εις την δυναμην του '
comma = 'κομμα'
else:
lang = lang[:2]
exponential_pronoun = ' times ten to the power of '
comma = ' point '
def replace_number(match):
prefix = match.group(1) or ""
number_part = match.group(2)
suffix = match.group(5) or ""
try:
if 'e' in number_part.lower():
base, exponent = number_part.lower().split('e')
words = _num2words(base, lang=lang) + exponential_pronoun + _num2words(exponent, lang=lang)
elif '.' in number_part:
integer_part, decimal_part = number_part.split('.')
words = _num2words(integer_part, lang=lang) + comma + " ".join(
[_num2words(digit, lang=lang) for digit in decimal_part])
else:
words = _num2words(number_part, lang=lang)
return prefix + words + suffix
except ValueError:
return match.group(0) # Return original if conversion fails
pattern = r'([^\d]*)(\d+(\.\d+)?([Ee][+-]?\d+)?)([^\d]*)'
return re.sub(pattern, replace_number, number_string)
language_names = ['Ancient greek',
'English',
'Deutsch',
'French',
'Hungarian',
'Romanian',
'Serbian (Approx.)']
def audionar_tts(text=None,
lang='romanian'):
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py
lang = lang.lower()
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang:
lang_code = 'hun'
elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):
# romani carpathian (has also Vlax) - cooler voice
lang_code = 'rmc-script_latin'
elif 'rom' in lang:
lang_code = 'ron'
elif 'ger' in lang or 'deu' in lang or 'allem' in lang:
lang_code = 'deu'
elif 'french' in lang:
lang_code = 'fra'
elif 'eng' in lang:
lang_code = 'eng'
elif 'ancient greek' in lang:
lang_code = 'grc'
else:
lang_code = lang.split()[0].strip() # latin & future option
# LATIN / GRC / CYRILLIC
text = only_greek_or_only_latin(text, lang=lang_code) # assure gr-chars if lang=='grc' / latin if lang!='grc'
# NUMERALS (^ in math expression found & substituted here before arriving to fix_vocals)
text = transliterate_number(text, lang=lang_code)
# PRONOUNC.
text = fix_vocals(text, lang=lang_code)
# VITS
global cached_lang_code, cached_net_g, cached_tokenizer
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
cached_lang_code = lang_code
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
net_g = cached_net_g
tokenizer = cached_tokenizer
total_audio = []
if not isinstance(text, list):
text = textwrap.wrap(text, width=439)
for _t in text:
inputs = tokenizer(_t, return_tensors="pt")
with torch.no_grad():
x = net_g(input_ids=inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device),
lang_code=lang_code,
)[0, :]
total_audio.append(x)
print(f'\n\n_______________________________ {_t} {x.shape=}')
x = torch.cat(total_audio).cpu().numpy()
tmp_file = f'_speech.wav'
audiofile.write(tmp_file, x, 16000)
return tmp_file
# --
device = 0 if torch.cuda.is_available() else "cpu"
duration = 2 # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-6-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
class AgeGenderHead(nn.Module):
r"""Age-gender model head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Age-gender recognition model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = AgeGenderHead(config, 1)
self.gender = AgeGenderHead(config, 3)
self.init_weights()
def forward(
self,
frozen_cnn7,
):
hidden_states = self.wav2vec2(frozen_cnn7=frozen_cnn7) # runs only Transformer layers
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
# AgeGenderModel.forward() is switched to accept computed frozen CNN7 features from ExpressioNmodel
def _forward(
self,
frozen_cnn7=None, # CNN7 fetures of wav2vec2 calc. from CNN7 feature extractor (once)
attention_mask=None):
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
frozen_cnn7.shape[1], attention_mask, add_adapter=False
)
hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7)
hidden_states = self.wav2vec2.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
)[0]
return hidden_states
def _forward_and_cnn7(
self,
input_values,
attention_mask=None):
frozen_cnn7 = self.wav2vec2.feature_extractor(input_values)
frozen_cnn7 = frozen_cnn7.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self.wav2vec2._get_feature_vector_attention_mask(
frozen_cnn7.shape[1], attention_mask, add_adapter=False
)
hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7) # grad=True non frozen
hidden_states = self.wav2vec2.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
)[0]
return hidden_states, frozen_cnn7 #feature_proj is trainable thus we have to access the frozen_cnn7 before projection layer
class ExpressionHead(nn.Module):
r"""Expression model head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class ExpressionModel(Wav2Vec2PreTrainedModel):
r"""speech expression model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = ExpressionHead(config)
self.init_weights()
def forward(self, input_values):
hidden_states, frozen_cnn7 = self.wav2vec2(input_values)
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits, frozen_cnn7
# Load models from hub
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)
# Emotion Calc. CNN features
age_gender_model.wav2vec2.forward = types.MethodType(_forward, age_gender_model)
expression_model.wav2vec2.forward = types.MethodType(_forward_and_cnn7, expression_model)
def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
# batch audio
y = expression_processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through expression model
with torch.no_grad():
_, logits_expression, frozen_cnn7 = expression_model(y)
_, logits_age, logits_gender = age_gender_model(frozen_cnn7=frozen_cnn7)
# Plot A/D/V values
plot_expression(logits_expression[0, 0].item(), # implicit detach().cpu().numpy()
logits_expression[0, 1].item(),
logits_expression[0, 2].item())
expression_file = "expression.png"
plt.savefig(expression_file)
return (
f"{round(100 * logits_age[0, 0].item())} years", # age
{
"female": logits_gender[0, 0].item(),
"male": logits_gender[0, 1].item(),
"child": logits_gender[0, 2].item(),
},
expression_file,
)
def recognize(input_file):
if input_file is None:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
signal, sampling_rate = audiofile.read(input_file, duration=duration)
# Resample to sampling rate supported byu the models
target_rate = 16000
signal = audresample.resample(signal, sampling_rate, target_rate)
return process_func(signal, target_rate)
def explode(data):
"""
Expands a 3D array by creating gaps between voxels.
This function is used to create the visual separation between the voxels.
"""
shape_orig = np.array(data.shape)
shape_new = shape_orig * 2 - 1
retval = np.zeros(shape_new, dtype=data.dtype)
retval[::2, ::2, ::2] = data
return retval
def explode(data):
"""
Expands a 3D array by adding new voxels between existing ones.
This is used to create the gaps in the 3D plot.
"""
shape = data.shape
new_shape = (2 * shape[0] - 1, 2 * shape[1] - 1, 2 * shape[2] - 1)
new_data = np.zeros(new_shape, dtype=data.dtype)
new_data[::2, ::2, ::2] = data
return new_data
def plot_expression(arousal, dominance, valence):
'''_h = cuda tensor (N_PIX, N_PIX, N_PIX)'''
N_PIX = 5
_h = np.random.rand(N_PIX, N_PIX, N_PIX) * 1e-3
adv = np.array([arousal, .994 - dominance, valence]).clip(0, .99)
arousal, dominance, valence = (adv * N_PIX).astype(np.int64) # find voxel
_h[arousal, dominance, valence] = .22
filled = np.ones((N_PIX, N_PIX, N_PIX), dtype=bool)
# upscale the above voxel image, leaving gaps
filled_2 = explode(filled)
# Shrink the gaps
x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) // 2
x[1::2, :, :] += 1
y[:, 1::2, :] += 1
z[:, :, 1::2] += 1
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
f_2 = np.ones([2 * N_PIX - 1,
2 * N_PIX - 1,
2 * N_PIX - 1, 4], dtype=np.float64)
f_2[:, :, :, 3] = explode(_h)
cm = plt.get_cmap('cool')
f_2[:, :, :, :3] = cm(f_2[:, :, :, 3])[..., :3]
f_2[:, :, :, 3] = f_2[:, :, :, 3].clip(.01, .74)
ecolors_2 = f_2
ax.voxels(x, y, z, filled_2, facecolors=f_2, edgecolors=.006 * ecolors_2)
ax.set_aspect('equal')
ax.set_zticks([0, N_PIX])
ax.set_xticks([0, N_PIX])
ax.set_yticks([0, N_PIX])
ax.set_zticklabels([f'{n/N_PIX:.2f}'[0:] for n in ax.get_zticks()])
ax.set_zlabel('valence', fontsize=10, labelpad=0)
ax.set_xticklabels([f'{n/N_PIX:.2f}' for n in ax.get_xticks()])
ax.set_xlabel('arousal', fontsize=10, labelpad=7)
# The y-axis rotation is corrected here from 275 to 90 degrees
ax.set_yticklabels([f'{1-n/N_PIX:.2f}' for n in ax.get_yticks()], rotation=90)
ax.set_ylabel('dominance', fontsize=10, labelpad=10)
ax.grid(False)
ax.plot([N_PIX, N_PIX], [0, N_PIX + .2], [N_PIX, N_PIX], 'g', linewidth=1)
ax.plot([0, N_PIX], [N_PIX, N_PIX + .24], [N_PIX, N_PIX], 'k', linewidth=1)
# Missing lines on the top face
ax.plot([0, 0], [0, N_PIX], [N_PIX, N_PIX], 'darkred', linewidth=1)
ax.plot([0, N_PIX], [0, 0], [N_PIX, N_PIX], 'darkblue', linewidth=1)
# Set pane colors after plotting the lines
# UPDATED: Replaced `w_xaxis` with `xaxis` and `w_yaxis` with `yaxis`.
ax.xaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
ax.yaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
ax.zaxis.set_pane_color((0.8, 0.8, 0.8, 0.0))
# Restore the limits to prevent the plot from expanding
ax.set_xlim(0, N_PIX)
ax.set_ylim(0, N_PIX)
ax.set_zlim(0, N_PIX)
# plt.show()
# TTS
VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
_tts = StyleTTS2().to('cpu')
def only_greek_or_only_latin(text, lang='grc'):
'''
str: The converted string in the specified target script.
Characters not found in any mapping are preserved as is.
Latin accented characters in the input (e.g., 'É', 'ü') will
be preserved in their lowercase form (e.g., 'é', 'ü') if
converting to Latin.
'''
# --- Mapping Dictionaries ---
# Keys are in lowercase as input text is case-folded.
# If the output needs to maintain original casing, additional logic is required.
latin_to_greek_map = {
'a': 'α', 'b': 'β', 'g': 'γ', 'd': 'δ', 'e': 'ε',
'ch': 'τσο', # Example of a multi-character Latin sequence
'z': 'ζ', 'h': 'χ', 'i': 'ι', 'k': 'κ', 'l': 'λ',
'm': 'μ', 'n': 'ν', 'x': 'ξ', 'o': 'ο', 'p': 'π',
'v': 'β', 'sc': 'σκ', 'r': 'ρ', 's': 'σ', 't': 'τ',
'u': 'ου', 'f': 'φ', 'c': 'σ', 'w': 'β', 'y': 'γ',
}
greek_to_latin_map = {
'ου': 'ou', # Prioritize common diphthongs/digraphs
'α': 'a', 'β': 'v', 'γ': 'g', 'δ': 'd', 'ε': 'e',
'ζ': 'z', 'η': 'i', 'θ': 'th', 'ι': 'i', 'κ': 'k',
'λ': 'l', 'μ': 'm', 'ν': 'n', 'ξ': 'x', 'ο': 'o',
'π': 'p', 'ρ': 'r', 'σ': 's', 'τ': 't', 'υ': 'y', # 'y' is a common transliteration for upsilon
'φ': 'f', 'χ': 'ch', 'ψ': 'ps', 'ω': 'o',
'ς': 's', # Final sigma
}
cyrillic_to_latin_map = {
'а': 'a', 'б': 'b', 'в': 'v', 'г': 'g', 'д': 'd', 'е': 'e', 'ё': 'yo', 'ж': 'zh',
'з': 'z', 'и': 'i', 'й': 'y', 'к': 'k', 'л': 'l', 'м': 'm', 'н': 'n', 'о': 'o',
'п': 'p', 'р': 'r', 'с': 's', 'т': 't', 'у': 'u', 'ф': 'f', 'х': 'kh', 'ц': 'ts',
'ч': 'ch', 'ш': 'sh', 'щ': 'shch', 'ъ': '', 'ы': 'y', 'ь': '', 'э': 'e', 'ю': 'yu',
'я': 'ya',
}
# Direct Cyrillic to Greek mapping based on phonetic similarity.
# These are approximations and may not be universally accepted transliterations.
cyrillic_to_greek_map = {
'а': 'α', 'б': 'β', 'в': 'β', 'г': 'γ', 'д': 'δ', 'е': 'ε', 'ё': 'ιο', 'ж': 'ζ',
'з': 'ζ', 'и': 'ι', 'й': 'ι', 'κ': 'κ', 'λ': 'λ', 'м': 'μ', 'н': 'ν', 'о': 'ο',
'π': 'π', 'ρ': 'ρ', 'σ': 'σ', 'τ': 'τ', 'у': 'ου', 'ф': 'φ', 'х': 'χ', 'ц': 'τσ',
'ч': 'τσ', # or τζ depending on desired sound
'ш': 'σ', 'щ': 'σ', # approximations
'ъ': '', 'ы': 'ι', 'ь': '', 'э': 'ε', 'ю': 'ιου',
'я': 'ια',
}
# Convert the input text to lowercase, preserving accents for Latin characters.
# casefold() is used for more robust caseless matching across Unicode characters.
lowercased_text = text.lower() #casefold()
output_chars = []
current_index = 0
if lang == 'grc':
# Combine all relevant maps for direct lookup to Greek
conversion_map = {**latin_to_greek_map, **cyrillic_to_greek_map}
# Sort keys by length in reverse order to handle multi-character sequences first
sorted_source_keys = sorted(
list(latin_to_greek_map.keys()) + list(cyrillic_to_greek_map.keys()),
key=len,
reverse=True
)
while current_index < len(lowercased_text):
found_conversion = False
for key in sorted_source_keys:
if lowercased_text.startswith(key, current_index):
output_chars.append(conversion_map[key])
current_index += len(key)
found_conversion = True
break
if not found_conversion:
# If no specific mapping found, append the character as is.
# This handles unmapped characters and already Greek characters.
output_chars.append(lowercased_text[current_index])
current_index += 1
return ''.join(output_chars)
else: # Default to 'lat' conversion
# Combine Greek to Latin and Cyrillic to Latin maps.
# Cyrillic map keys will take precedence in case of overlap if defined after Greek.
combined_to_latin_map = {**greek_to_latin_map, **cyrillic_to_latin_map}
# Sort all relevant source keys by length in reverse for replacement
sorted_source_keys = sorted(
list(greek_to_latin_map.keys()) + list(cyrillic_to_latin_map.keys()),
key=len,
reverse=True
)
while current_index < len(lowercased_text):
found_conversion = False
for key in sorted_source_keys:
if lowercased_text.startswith(key, current_index):
latin_equivalent = combined_to_latin_map[key]
# Strip accents ONLY if the source character was from the Greek map.
# This preserves accents on original Latin characters (like 'é')
# and allows for intentional accent stripping from Greek transliterations.
if key in greek_to_latin_map:
normalized_latin = unicodedata.normalize('NFD', latin_equivalent)
stripped_latin = ''.join(c for c in normalized_latin if not unicodedata.combining(c))
output_chars.append(stripped_latin)
else:
output_chars.append(latin_equivalent)
current_index += len(key)
found_conversion = True
break
if not found_conversion:
# If no conversion happened from Greek or Cyrillic, append the character as is.
# This preserves existing Latin characters (including accented ones from input),
# numbers, punctuation, and other symbols.
output_chars.append(lowercased_text[current_index])
current_index += 1
return ''.join(output_chars)
def other_tts(text='Hallov worlds Far over the',
ref_s='wav/af_ZA_google-nwu_0184.wav'):
text = only_greek_or_only_latin(text, lang='eng')
x = _tts.inference(text, ref_s=ref_s)[0:1, 0, :]
x = torch.cat([.99 * x,
.94 * x], 0).cpu().numpy() # Stereo
# x /= np.abs(x).max() + 1e-7 ~ Volume normalisation @api.py:tts_multi_sentence() OR demo.py
tmp_file = f'_speech.wav' # N x clients (cleanup vs tmp file / client)
audiofile.write(tmp_file, x, 24000)
return tmp_file
def update_selected_voice(voice_filename):
return 'wav/' + voice_filename + '.wav'
description = (
"Estimate **age**, **gender**, and **expression** "
"of the speaker contained in an audio file or microphone recording. \n"
f"The model [{age_gender_model_name}]"
f"(https://huggingface.co/{age_gender_model_name}) "
"recognises age and gender, "
f"whereas [{expression_model_name}]"
f"(https://huggingface.co/{expression_model_name}) "
"recognises the expression dimensions arousal, dominance, and valence. "
)
css_buttons = """
.cool-button {
background-color: #1a2a40; /* Slightly lighter dark blue */
color: white;
padding: 15px 32px;
text-align: center;
font-size: 16px;
border-radius: 12px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.4);
transition: all 0.3s ease-in-out;
border: none;
cursor: pointer;
}
.cool-button:hover {
background-color: #1a2a40; /* Slightly lighter dark blue */
transform: scale(1.05);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.4);
}
.cool-row {
margin-bottom: 10px;
}
"""
with gr.Blocks(theme='huggingface', css=css_buttons) as demo:
with gr.Tab(label="other TTS"):
selected_voice = gr.State(value='wav/en_US_m-ailabs_mary_ann.wav')
with gr.Row():
voice_info = gr.Markdown(f'Vox = `{selected_voice.value}`')
# Main input and output components
with gr.Row():
text_input = gr.Textbox(
label="Enter text for TTS:",
placeholder="Type your message here...",
lines=4,
value="Farover the misty mountains cold too dungeons deep and caverns old.",
)
generate_button = gr.Button("Generate Audio", variant="primary")
output_audio = gr.Audio(label="TTS Output")
with gr.Column():
voice_buttons = []
for i in range(0, len(VOICES), 7):
with gr.Row(elem_classes=["cool-row"]):
for voice_filename in VOICES[i:i+7]:
voice_filename = voice_filename[4:-4] # drop wav/ for visibility
button = gr.Button(voice_filename, elem_classes=["cool-button"])
button.click(
fn=update_selected_voice,
inputs=[gr.Textbox(value=voice_filename, visible=False)],
outputs=[selected_voice]
)
button.click(
fn=lambda v=voice_filename: f'Vox = `{v}`',
inputs=None,
outputs=voice_info
)
voice_buttons.append(button)
generate_button.click(
fn=other_tts,
inputs=[text_input, selected_voice],
outputs=output_audio
)
with gr.Tab(label="Speech Analysis"):
with gr.Row():
with gr.Column():
gr.Markdown(description)
input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio input",
min_length=0.025, # seconds
)
gr.Examples(
[
"wav/female-46-neutral.wav",
"wav/female-20-happy.wav",
"wav/male-60-angry.wav",
"wav/male-27-sad.wav",
],
[input],
label="Examples from CREMA-D, ODbL v1.0 license",
)
gr.Markdown("Only the first two seconds of the audio will be processed.")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_age = gr.Textbox(label="Age")
output_gender = gr.Label(label="Gender")
output_expression = gr.Image(label="Expression")
outputs = [output_age, output_gender, output_expression]
submit_btn.click(recognize, input, outputs)
with gr.Tab("audionar TTS"):
with gr.Row():
text_input = gr.Textbox(
lines=4,
value='Η γρηγορη καφετι αλεπου πειδαει πανω απο τον τεμπελη σκυλο.',
label="Type text for TTS"
)
lang_dropdown = gr.Dropdown(
choices=language_names,
label="TTS language",
value="Ancient greek",
)
# Create a button to trigger the TTS function
tts_button = gr.Button("Generate Audio")
# Create the output audio component
audio_output = gr.Audio(label="Generated Audio")
# Link the button click event to the mms_tts function
tts_button.click(
fn=audionar_tts,
inputs=[text_input, lang_dropdown],
outputs=audio_output
)
demo.launch(debug=True)