Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,701 Bytes
f289d8a 2ff9705 f289d8a 2ff9705 f289d8a 2ff9705 4bf2ad3 64ed036 2ff9705 f289d8a 96f48ba f289d8a 96f48ba f289d8a 49d2559 a9d8551 64ed036 f289d8a 0a46f13 f289d8a 0a46f13 f289d8a 9438399 2ec5667 9438399 96f48ba 9438399 429475e 9ec45ba 429475e 9438399 2ec5667 7eff7af 2ec5667 c3bbe69 20f45fe 7eff7af 2ec5667 c3bbe69 20f45fe 7eff7af 2ec5667 c3bbe69 9438399 525f20c 2ec5667 c8fb6b4 9438399 1ec606c 9438399 f289d8a 0a46f13 f289d8a 9438399 f289d8a 64ed036 9438399 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# UVIS - Gradio App with Upload, URL & Video Support
"""
This script launches the UVIS (Unified Visual Intelligence System) as a Gradio Web App.
Supports image, video, and URL-based media inputs for detection, segmentation, and depth estimation.
Outputs include scene blueprint, structured JSON, and downloadable results.
"""
import time
import logging
import gradio as gr
from PIL import Image
import cv2
import timeout_decorator
import spaces
from registry import get_model
from core.describe_scene import describe_scene
from core.process import process_image
from core.input_handler import resolve_input, validate_video, validate_image
from utils.helpers import format_error, generate_session_id
from huggingface_hub import hf_hub_download
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Model mappings
DETECTION_MODEL_MAP = {
"YOLOv5-Nano": "yolov5n-seg",
"YOLOv5-Small": "yolov5s-seg",
"YOLOv8-Small": "yolov8s",
"YOLOv8-Large": "yolov8l",
"RT-DETR": "rtdetr" # For future support
}
SEGMENTATION_MODEL_MAP = {
"SegFormer-B0": "nvidia/segformer-b0-finetuned-ade-512-512",
"SegFormer-B5": "nvidia/segformer-b5-finetuned-ade-512-512",
"DeepLabV3-ResNet50": "deeplabv3_resnet50"
}
DEPTH_MODEL_MAP = {
"MiDaS v21 Small 256": "midas_v21_small_256",
"MiDaS v21 384": "midas_v21_384",
"DPT Hybrid 384": "dpt_hybrid_384",
"DPT Swin2 Large 384": "dpt_swin2_large_384",
"DPT Beit Large 512": "dpt_beit_large_512"
}
# Resource Limits
MAX_IMAGE_MB = 15
MAX_IMAGE_RES = (1920, 1080)
MAX_VIDEO_MB = 50
MAX_VIDEO_DURATION = 15 # seconds
@spaces.GPU
def preload_models():
"""
This function is needed to activate ZeroGPU. It must be decorated with @spaces.GPU.
It can be used to warm up models or load them into memory.
"""
from registry import get_model
print("Warming up models for ZeroGPU...")
get_model("detection", "yolov5n-seg", device="cpu")
get_model("segmentation", "deeplabv3_resnet50", device="cpu")
get_model("depth", "midas_v21_small_256", device="cpu")
# Main Handler
def handle(mode, media_upload, url, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend):
"""
Master handler for resolving input and processing.
Returns outputs for Gradio interface.
"""
session_id = generate_session_id()
logger.info(f"Session ID: {session_id} | Handler activated with mode: {mode}")
start_time = time.time()
media = resolve_input(mode, media_upload, url)
if not media:
return None, format_error("No valid input provided. Please check your upload or URL."), None
results = []
for single_media in media:
if isinstance(single_media, str): # Video file
valid, err = validate_video(single_media)
if not valid:
return None, format_error(err), None
cap = cv2.VideoCapture(single_media)
ret, frame = cap.read()
cap.release()
if not ret:
return None, format_error("Failed to read video frame."), None
single_media = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if isinstance(single_media, Image.Image):
valid, err = validate_image(single_media)
if not valid:
return None, format_error(err), None
try:
return process_image(single_media, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend)
except timeout_decorator.timeout_decorator.TimeoutError:
logger.error("Image processing timed out.")
return None, format_error("Processing timed out. Try a smaller image or simpler model."), None
logger.warning("Unsupported media type resolved.")
log_runtime(start_time)
return None, format_error("Invalid input. Please check your upload or URL."), None
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Unified Visual Intelligence System (UVIS)")
with gr.Row():
# left panel
with gr.Column(scale=2):
# Input Mode Toggle
mode = gr.Radio(["Upload", "URL"], value="Upload", label="Input Mode")
# File upload: accepts multiple images or one video (user chooses wisely)
media_upload = gr.File(
label="Upload Images (1–5) or 1 Video",
file_types=["image", ".mp4", ".mov", ".avi"],
file_count="multiple",
visible=True
)
# URL input
url = gr.Textbox(label="URL (Image/Video)", visible=False)
# Toggle visibility
def toggle_inputs(selected_mode):
return [
gr.update(visible=(selected_mode == "Upload")), # media_upload
gr.update(visible=(selected_mode == "URL")) # url
]
mode.change(toggle_inputs, inputs=mode, outputs=[media_upload, url])
# Visibility logic function
def toggle_visibility(checked):
return gr.update(visible=checked)
def toggle_det_visibility(checked):
return [gr.update(visible=checked), gr.update(visible=checked)]
run_det = gr.Checkbox(label="Object Detection")
run_seg = gr.Checkbox(label="Semantic Segmentation")
run_depth = gr.Checkbox(label="Depth Estimation")
with gr.Row():
with gr.Column(visible=False) as OD_Settings:
with gr.Accordion("Object Detection Settings", open=True):
det_model = gr.Dropdown(choices=list(DETECTION_MODEL_MAP), label="Detection Model")
det_confidence = gr.Slider(0.1, 1.0, 0.5, label="Detection Confidence Threshold")
nms_thresh = gr.Slider(0.1, 1.0, 0.45, label="NMS Threshold")
max_det = gr.Slider(1, 100, 20, step=1, label="Max Detections")
iou_thresh = gr.Slider(0.1, 1.0, 0.5, label="IoU Threshold")
class_filter = gr.CheckboxGroup(["Person", "Car", "Dog"], label="Class Filter")
with gr.Column(visible=False) as SS_Settings:
with gr.Accordion("Semantic Segmentation Settings", open=True):
seg_model = gr.Dropdown(choices=list(SEGMENTATION_MODEL_MAP), label="Segmentation Model")
resize_strategy = gr.Dropdown(["Crop", "Pad", "Scale"], label="Resize Strategy")
overlay_alpha = gr.Slider(0.0, 1.0, 0.5, label="Overlay Opacity")
seg_classes = gr.CheckboxGroup(["Road", "Sky", "Building"], label="Target Classes")
enable_crf = gr.Checkbox(label="Postprocessing (CRF)")
with gr.Column(visible=False) as DE_Settings:
with gr.Accordion("Depth Estimation Settings", open=True):
depth_model = gr.Dropdown(choices=list(DEPTH_MODEL_MAP), label="Depth Model")
output_type = gr.Dropdown(["Raw", "Disparity", "Scaled"], label="Output Type")
colormap = gr.Dropdown(["Jet", "Viridis", "Plasma"], label="Colormap")
blend = gr.Slider(0.0, 1.0, 0.5, label="Overlay Blend")
normalize = gr.Checkbox(label="Normalize Depth")
max_depth = gr.Slider(0.1, 10.0, 5.0, label="Max Depth (meters)")
# Attach Visibility Logic
run_det.change(fn=toggle_visibility, inputs=[run_det], outputs=[OD_Settings])
run_seg.change(fn=toggle_visibility, inputs=[run_seg], outputs=[SS_Settings])
run_depth.change(fn=toggle_visibility, inputs=[run_depth], outputs=[DE_Settings])
blend = gr.Slider(0.0, 1.0, 0.5, label="Overlay Blend")
# Run Button
run = gr.Button("Run Analysis")
#Right panel
with gr.Column(scale=1):
# single_img_preview = gr.Image(label="Preview (Image)", visible=False)
# gallery_preview = gr.Gallery(label="Preview (Gallery)", columns=3, height="auto", visible=False)
# video_preview = gr.Video(label="Preview (Video)", visible=False)
img_out = gr.Image(label="Scene Blueprint")
json_out = gr.JSON(label="Scene JSON")
zip_out = gr.File(label="Download Results")
# # Output Tabs
# with gr.Tab("Scene JSON"):
# json_out = gr.JSON()
# with gr.Tab("Scene Blueprint"):
# img_out = gr.Image()
# with gr.Tab("Download"):
# zip_out = gr.File()
# Button Click Event
run.click(
handle,
inputs=[mode, media_upload, url, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend],
outputs=[img_out, json_out, zip_out]
)
# Footer Section
gr.Markdown("---")
gr.Markdown(
"""
<div style='text-align: center; font-size: 14px;'>
Built by <b>Durga Deepak Valluri</b><br>
<a href="https://github.com/DurgaDeepakValluri" target="_blank">GitHub</a> |
<a href="https://deecoded.io" target="_blank">Website</a> |
<a href="https://www.linkedin.com/in/durga-deepak-valluri" target="_blank">LinkedIn</a>
</div>
""",
)
# Launch the Gradio App
demo.launch()
|