Spaces:
Running
on
Zero
Running
on
Zero
Update models/detection/detector.py
Browse files
models/detection/detector.py
CHANGED
@@ -3,20 +3,16 @@ from PIL import Image, ImageDraw
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from ultralytics import YOLO
|
5 |
import os
|
6 |
-
import shutil
|
7 |
import torch
|
8 |
|
9 |
# Setup logger
|
10 |
logger = logging.getLogger(__name__)
|
11 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
12 |
|
13 |
-
# Optional: clear weights cache each time (only for dev use)
|
14 |
-
shutil.rmtree("models/detection/weights", ignore_errors=True)
|
15 |
-
|
16 |
class ObjectDetector:
|
17 |
def __init__(self, model_key="yolov8n.pt", device="cpu"):
|
18 |
"""
|
19 |
-
Initializes an Ultralytics YOLO model
|
20 |
|
21 |
Args:
|
22 |
model_key (str): e.g. 'yolov8n.pt', 'yolov8s.pt', etc.
|
@@ -50,16 +46,16 @@ class ObjectDetector:
|
|
50 |
force_download=False
|
51 |
)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
def load_model(self):
|
57 |
if self.model is None:
|
58 |
-
logger.info("
|
59 |
self.model = YOLO(self.weights_path)
|
60 |
if self.device == "cuda" and torch.cuda.is_available():
|
61 |
self.model.to("cuda")
|
62 |
-
logger.info(f"✅ YOLO model
|
63 |
|
64 |
def predict(self, image: Image.Image, conf_threshold=0.25):
|
65 |
self.load_model()
|
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from ultralytics import YOLO
|
5 |
import os
|
|
|
6 |
import torch
|
7 |
|
8 |
# Setup logger
|
9 |
logger = logging.getLogger(__name__)
|
10 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
11 |
|
|
|
|
|
|
|
12 |
class ObjectDetector:
|
13 |
def __init__(self, model_key="yolov8n.pt", device="cpu"):
|
14 |
"""
|
15 |
+
Initializes an Ultralytics YOLO model path, defers actual model loading.
|
16 |
|
17 |
Args:
|
18 |
model_key (str): e.g. 'yolov8n.pt', 'yolov8s.pt', etc.
|
|
|
46 |
force_download=False
|
47 |
)
|
48 |
|
49 |
+
logger.info(f"✅ YOLO weights ready for {resolved_key} at {self.weights_path}")
|
50 |
+
self.model = None # defer loading
|
51 |
|
52 |
def load_model(self):
|
53 |
if self.model is None:
|
54 |
+
logger.info("⚙️ Loading YOLO model into memory (runtime-safe)")
|
55 |
self.model = YOLO(self.weights_path)
|
56 |
if self.device == "cuda" and torch.cuda.is_available():
|
57 |
self.model.to("cuda")
|
58 |
+
logger.info(f"✅ YOLO model initialized on {self.device}")
|
59 |
|
60 |
def predict(self, image: Image.Image, conf_threshold=0.25):
|
61 |
self.load_model()
|