File size: 1,766 Bytes
f13a234
 
e9706de
 
f13a234
 
 
e9706de
 
 
 
 
 
 
 
 
 
f13a234
 
 
e9706de
8f2a2d1
f13a234
 
e9706de
 
f13a234
 
 
 
 
 
 
 
e9706de
f13a234
 
e9706de
f13a234
e9706de
f13a234
 
 
 
 
 
 
e9706de
 
 
 
 
 
 
f13a234
e9706de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import glob
import faiss
import numpy as np
from datasets import Dataset
from unstructured.partition.pdf import partition_pdf
from transformers import RagTokenizer
from sentence_transformers import SentenceTransformer

def ingest_and_push(
    dataset_name="username/mealplan-chunks",
    index_path="mealplan.index"
):
    # 1) Tokenizer for chunking
    rag_tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
    # 2) Embedder for FAISS
    embedder = SentenceTransformer("all-MiniLM-L6-v2")

    texts, sources, pages = [], [], []

    # 3) Chunk each PDF
    for pdf_path in glob.glob("meal_plans/*.pdf"):
        book = os.path.basename(pdf_path)
        pages_data = partition_pdf(filename=pdf_path)
        for pg_num, page in enumerate(pages_data, start=1):
            enc = rag_tokenizer(
                page.text,
                max_length=800,
                truncation=True,
                return_overflowing_tokens=True,
                stride=50,
                return_tensors="pt"
            )
            for token_ids in enc["input_ids"]:
                chunk = rag_tokenizer.decode(token_ids, skip_special_tokens=True)
                texts.append(chunk)
                sources.append(book)
                pages.append(pg_num)

    # 4) Build HF Dataset
    ds = Dataset.from_dict({
        "text": texts,
        "source": sources,
        "page": pages
    })
    ds.push_to_hub(dataset_name, token=True)

    # 5) Build FAISS index
    embeddings = embedder.encode(texts, convert_to_numpy=True)
    dim        = embeddings.shape[1]
    index      = faiss.IndexFlatL2(dim)       # CPU index
    index.add(embeddings)
    faiss.write_index(index, index_path)

if __name__ == "__main__":
    ingest_and_push()