File size: 11,789 Bytes
6fb1c7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import gradio as gr
import os
import tempfile
import requests
from moviepy.editor import VideoFileClip
import random
import json

# --- Lightweight AccentAnalyzer class ---

class AccentAnalyzer:
    def __init__(self):
        self.accent_profiles = {
            "American": {
                "features": ["rhotic", "flapped_t", "cot_caught_merger"],
                "description": "American English accent with rhotic pronunciation and typical North American features."
            },
            "British": {
                "features": ["non_rhotic", "t_glottalization", "trap_bath_split"],
                "description": "British English accent with non-rhotic pronunciation and typical UK features."
            },
            "Australian": {
                "features": ["non_rhotic", "flat_a", "high_rising_terminal"],
                "description": "Australian English accent with distinctive vowel sounds and intonation patterns."
            },
            "Canadian": {
                "features": ["rhotic", "canadian_raising", "eh_tag"],
                "description": "Canadian English accent with features of both American and British English."
            },
            "Indian": {
                "features": ["retroflex_consonants", "monophthongization", "syllable_timing"],
                "description": "Indian English accent influenced by native Indian languages."
            },
            "Irish": {
                "features": ["dental_fricatives", "alveolar_l", "soft_consonants"],
                "description": "Irish English accent with distinctive rhythm and consonant patterns."
            },
            "Scottish": {
                "features": ["rolled_r", "monophthongs", "glottal_stops"],
                "description": "Scottish English accent with strong consonants and distinctive vowel patterns."
            },
            "South African": {
                "features": ["non_rhotic", "kit_split", "kw_hw_distinction"],
                "description": "South African English accent with influences from Afrikaans and other local languages."
            }
        }
        self._load_or_create_accent_data()

    def _load_or_create_accent_data(self):
        # For demo: just create simulated data in-memory
        self.accent_data = self._create_simulated_accent_data()

    def _create_simulated_accent_data(self):
        accent_data = {}
        for accent, profile in self.accent_profiles.items():
            accent_data[accent] = {
                "primary_features": profile["features"],
                "feature_probabilities": {}
            }
            for feature in profile["features"]:
                accent_data[accent]["feature_probabilities"][feature] = random.uniform(0.7, 0.9)
            all_features = set()
            for a, p in self.accent_profiles.items():
                all_features.update(p["features"])
            for feature in all_features:
                if feature not in profile["features"]:
                    accent_data[accent]["feature_probabilities"][feature] = random.uniform(0.1, 0.4)
        return accent_data

    def _extract_features(self, audio_path):
        # This is a simulated feature extraction for the demo.
        # In a real application, this would use SpeechBrain or similar ML models
        # to extract actual phonetic features from the audio.
        all_features = set()
        for accent, profile in self.accent_profiles.items():
            all_features.update(profile["features"])
        detected_features = {}
        for feature in all_features:
            # Simulate detection of features with varying probabilities
            detected_features[feature] = random.uniform(0.1, 0.9)
        return detected_features

    def _calculate_accent_scores(self, detected_features):
        accent_scores = {}
        for accent, data in self.accent_data.items():
            score = 0
            total_weight = 0
            for feature, probability in detected_features.items():
                expected_prob = data["feature_probabilities"].get(feature, 0.1)
                weight = 3.0 if feature in data["primary_features"] else 1.0 # Give more weight to primary features
                feature_score = probability * expected_prob * weight
                score += feature_score
                total_weight += weight
            if total_weight > 0:
                accent_scores[accent] = (score / total_weight) * 100
            else:
                accent_scores[accent] = 0
        return accent_scores

    def _generate_explanation(self, accent_type, confidence):
        if confidence >= 70:
            confidence_level = "high confidence"
            certainty = "is very clear"
        elif confidence >= 50:
            confidence_level = "moderate confidence"
            certainty = "is present"
        else:
            confidence_level = "low confidence"
            certainty = "may be present"
        description = self.accent_profiles[accent_type]["description"]
        second_accent = self._get_second_most_likely_accent(accent_type)
        explanation = f"The speaker has a {confidence_level} {accent_type} English accent. The {accent_type} accent {certainty}, with features of both {accent_type} and {second_accent} English present."
        return explanation

    def _get_second_most_likely_accent(self, primary_accent):
        # Simple rule-based selection for demo purposes
        accent_similarities = {
            "American": ["Canadian", "British"],
            "British": ["Australian", "Irish"],
            "Australian": ["British", "South African"],
            "Canadian": ["American", "British"],
            "Indian": ["British", "South African"],
            "Irish": ["Scottish", "British"],
            "Scottish": ["Irish", "British"],
            "South African": ["Australian", "British"]
        }
        # Pick a random similar accent from the predefined list
        return random.choice(accent_similarities[primary_accent])

    def analyze_accent(self, audio_path):
        """
        Analyzes the accent from an audio file.
        In this demo, it simulates feature extraction and accent scoring.
        """
        detected_features = self._extract_features(audio_path)
        accent_scores = self._calculate_accent_scores(detected_features)
        
        # Find the accent with the highest score
        accent_type = max(accent_scores, key=accent_scores.get)
        confidence = accent_scores[accent_type]
        
        explanation = self._generate_explanation(accent_type, confidence)
        
        return {
            "accent_type": accent_type,
            "confidence": confidence,
            "explanation": explanation,
            "all_scores": accent_scores # Useful for debugging or more detailed display
        }

# --- Utility: Download video and extract audio ---

def download_and_extract_audio(url):
    """
    Downloads a video from a URL and extracts its audio to a WAV file.
    Handles both direct MP4 links and YouTube URLs (using pytubefix).
    """
    temp_dir = tempfile.mkdtemp()
    video_path = os.path.join(temp_dir, "video.mp4")
    audio_path = os.path.join(temp_dir, "audio.wav")

    try:
        # Download video
        # Check for YouTube URL patterns (simplified for demo)
        if "youtube.com/" in url or "youtu.be/" in url:
            try:
                from pytubefix import YouTube
                yt = YouTube(url)
                # Try to get a progressive stream (video + audio)
                stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
                if not stream:
                    # Fallback to separate audio stream if progressive not found
                    stream = yt.streams.filter(only_audio=True).first()
                    if not stream:
                        raise RuntimeError("No suitable video or audio stream found for YouTube URL.")
                
                # Download the stream
                stream.download(output_path=temp_dir, filename="video.mp4")
            except ImportError:
                raise ImportError("pytubefix is not installed. Please install it with 'pip install pytubefix'.")
            except Exception as e:
                # Catch specific YouTube errors, e.g., age restriction, unavailable
                raise RuntimeError(f"Error downloading YouTube video: {e}. Try running locally or use a direct MP4 link.")
        else:
            # Direct MP4 download
            response = requests.get(url, stream=True)
            response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
            with open(video_path, "wb") as f:
                for chunk in response.iter_content(chunk_size=8192):
                    f.write(chunk)
        
        # Extract audio using moviepy
        clip = VideoFileClip(video_path)
        clip.audio.write_audiofile(audio_path, logger=None) # logger=None suppresses moviepy output
        clip.close()
        
        return audio_path
    finally:
        # Clean up the video file immediately after audio extraction
        if os.path.exists(video_path):
            os.remove(video_path)
        # The temp_dir itself will be handled by Gradio's internal tempfile management,
        # or you can add os.rmdir(temp_dir) if you manage temp_dir manually.

# --- Gradio interface ---

def analyze_from_url(url):
    """
    Gradio interface function to analyze accent from a given video URL.
    """
    if not url:
        return "Please enter a video URL.", "N/A", "No URL provided."

    try:
        audio_path = download_and_extract_audio(url)
        analyzer = AccentAnalyzer()
        results = analyzer.analyze_accent(audio_path)
        
        # Clean up the temporary audio file after analysis
        if os.path.exists(audio_path):
            os.remove(audio_path)

        return (
            results["accent_type"],
            f"{results['confidence']:.1f}%",
            results["explanation"]
        )
    except Exception as e:
        # Catch and display any errors during the process
        return (
            "Error",
            "0%",
            f"Error processing video/audio: {e}. Please ensure the URL is valid and publicly accessible."
        )

# Create the Gradio interface
iface = gr.Interface(
    fn=analyze_from_url,
    inputs=gr.Textbox(
        label="Enter Public Video URL (YouTube or direct MP4)",
        placeholder="e.g., https://www.youtube.com/watch?v=dQw4w9WgXcQ or https://samplelib.com/lib/preview/mp4/sample-5s.mp4"
    ),
    outputs=[
        gr.Textbox(label="Detected Accent"),
        gr.Textbox(label="Confidence Score"),
        gr.Textbox(label="Explanation")
    ],
    title="English Accent Analyzer (Rule-Based Demo)",
    description="""
    Paste a public video URL (YouTube or direct MP4) to detect the English accent and confidence score.
    
    **Important Notes:**
    * This is a **DEMO** using a simulated accent analysis model, not a real machine learning model.
    * It uses `pytubefix` for YouTube links and `requests`/`moviepy` for direct MP4s.
    * YouTube video extraction can sometimes be temperamental due to YouTube's changing policies or region restrictions. Direct MP4 links are generally more reliable.
    * **Sample MP4 URL for testing:** `https://samplelib.com/lib/preview/mp4/sample-5s.mp4`
    """
)

# Launch the Gradio interface
# `share=False` for local deployment (no public link generated)
# For Hugging Face Spaces, you typically don't need `iface.launch()` as the platform handles it.
# However, if you're running it locally to test before deployment, keep this block.
if __name__ == "__main__":
    iface.launch(debug=True, share=False)