File size: 11,789 Bytes
6fb1c7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import gradio as gr
import os
import tempfile
import requests
from moviepy.editor import VideoFileClip
import random
import json
# --- Lightweight AccentAnalyzer class ---
class AccentAnalyzer:
def __init__(self):
self.accent_profiles = {
"American": {
"features": ["rhotic", "flapped_t", "cot_caught_merger"],
"description": "American English accent with rhotic pronunciation and typical North American features."
},
"British": {
"features": ["non_rhotic", "t_glottalization", "trap_bath_split"],
"description": "British English accent with non-rhotic pronunciation and typical UK features."
},
"Australian": {
"features": ["non_rhotic", "flat_a", "high_rising_terminal"],
"description": "Australian English accent with distinctive vowel sounds and intonation patterns."
},
"Canadian": {
"features": ["rhotic", "canadian_raising", "eh_tag"],
"description": "Canadian English accent with features of both American and British English."
},
"Indian": {
"features": ["retroflex_consonants", "monophthongization", "syllable_timing"],
"description": "Indian English accent influenced by native Indian languages."
},
"Irish": {
"features": ["dental_fricatives", "alveolar_l", "soft_consonants"],
"description": "Irish English accent with distinctive rhythm and consonant patterns."
},
"Scottish": {
"features": ["rolled_r", "monophthongs", "glottal_stops"],
"description": "Scottish English accent with strong consonants and distinctive vowel patterns."
},
"South African": {
"features": ["non_rhotic", "kit_split", "kw_hw_distinction"],
"description": "South African English accent with influences from Afrikaans and other local languages."
}
}
self._load_or_create_accent_data()
def _load_or_create_accent_data(self):
# For demo: just create simulated data in-memory
self.accent_data = self._create_simulated_accent_data()
def _create_simulated_accent_data(self):
accent_data = {}
for accent, profile in self.accent_profiles.items():
accent_data[accent] = {
"primary_features": profile["features"],
"feature_probabilities": {}
}
for feature in profile["features"]:
accent_data[accent]["feature_probabilities"][feature] = random.uniform(0.7, 0.9)
all_features = set()
for a, p in self.accent_profiles.items():
all_features.update(p["features"])
for feature in all_features:
if feature not in profile["features"]:
accent_data[accent]["feature_probabilities"][feature] = random.uniform(0.1, 0.4)
return accent_data
def _extract_features(self, audio_path):
# This is a simulated feature extraction for the demo.
# In a real application, this would use SpeechBrain or similar ML models
# to extract actual phonetic features from the audio.
all_features = set()
for accent, profile in self.accent_profiles.items():
all_features.update(profile["features"])
detected_features = {}
for feature in all_features:
# Simulate detection of features with varying probabilities
detected_features[feature] = random.uniform(0.1, 0.9)
return detected_features
def _calculate_accent_scores(self, detected_features):
accent_scores = {}
for accent, data in self.accent_data.items():
score = 0
total_weight = 0
for feature, probability in detected_features.items():
expected_prob = data["feature_probabilities"].get(feature, 0.1)
weight = 3.0 if feature in data["primary_features"] else 1.0 # Give more weight to primary features
feature_score = probability * expected_prob * weight
score += feature_score
total_weight += weight
if total_weight > 0:
accent_scores[accent] = (score / total_weight) * 100
else:
accent_scores[accent] = 0
return accent_scores
def _generate_explanation(self, accent_type, confidence):
if confidence >= 70:
confidence_level = "high confidence"
certainty = "is very clear"
elif confidence >= 50:
confidence_level = "moderate confidence"
certainty = "is present"
else:
confidence_level = "low confidence"
certainty = "may be present"
description = self.accent_profiles[accent_type]["description"]
second_accent = self._get_second_most_likely_accent(accent_type)
explanation = f"The speaker has a {confidence_level} {accent_type} English accent. The {accent_type} accent {certainty}, with features of both {accent_type} and {second_accent} English present."
return explanation
def _get_second_most_likely_accent(self, primary_accent):
# Simple rule-based selection for demo purposes
accent_similarities = {
"American": ["Canadian", "British"],
"British": ["Australian", "Irish"],
"Australian": ["British", "South African"],
"Canadian": ["American", "British"],
"Indian": ["British", "South African"],
"Irish": ["Scottish", "British"],
"Scottish": ["Irish", "British"],
"South African": ["Australian", "British"]
}
# Pick a random similar accent from the predefined list
return random.choice(accent_similarities[primary_accent])
def analyze_accent(self, audio_path):
"""
Analyzes the accent from an audio file.
In this demo, it simulates feature extraction and accent scoring.
"""
detected_features = self._extract_features(audio_path)
accent_scores = self._calculate_accent_scores(detected_features)
# Find the accent with the highest score
accent_type = max(accent_scores, key=accent_scores.get)
confidence = accent_scores[accent_type]
explanation = self._generate_explanation(accent_type, confidence)
return {
"accent_type": accent_type,
"confidence": confidence,
"explanation": explanation,
"all_scores": accent_scores # Useful for debugging or more detailed display
}
# --- Utility: Download video and extract audio ---
def download_and_extract_audio(url):
"""
Downloads a video from a URL and extracts its audio to a WAV file.
Handles both direct MP4 links and YouTube URLs (using pytubefix).
"""
temp_dir = tempfile.mkdtemp()
video_path = os.path.join(temp_dir, "video.mp4")
audio_path = os.path.join(temp_dir, "audio.wav")
try:
# Download video
# Check for YouTube URL patterns (simplified for demo)
if "youtube.com/" in url or "youtu.be/" in url:
try:
from pytubefix import YouTube
yt = YouTube(url)
# Try to get a progressive stream (video + audio)
stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if not stream:
# Fallback to separate audio stream if progressive not found
stream = yt.streams.filter(only_audio=True).first()
if not stream:
raise RuntimeError("No suitable video or audio stream found for YouTube URL.")
# Download the stream
stream.download(output_path=temp_dir, filename="video.mp4")
except ImportError:
raise ImportError("pytubefix is not installed. Please install it with 'pip install pytubefix'.")
except Exception as e:
# Catch specific YouTube errors, e.g., age restriction, unavailable
raise RuntimeError(f"Error downloading YouTube video: {e}. Try running locally or use a direct MP4 link.")
else:
# Direct MP4 download
response = requests.get(url, stream=True)
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
with open(video_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
# Extract audio using moviepy
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, logger=None) # logger=None suppresses moviepy output
clip.close()
return audio_path
finally:
# Clean up the video file immediately after audio extraction
if os.path.exists(video_path):
os.remove(video_path)
# The temp_dir itself will be handled by Gradio's internal tempfile management,
# or you can add os.rmdir(temp_dir) if you manage temp_dir manually.
# --- Gradio interface ---
def analyze_from_url(url):
"""
Gradio interface function to analyze accent from a given video URL.
"""
if not url:
return "Please enter a video URL.", "N/A", "No URL provided."
try:
audio_path = download_and_extract_audio(url)
analyzer = AccentAnalyzer()
results = analyzer.analyze_accent(audio_path)
# Clean up the temporary audio file after analysis
if os.path.exists(audio_path):
os.remove(audio_path)
return (
results["accent_type"],
f"{results['confidence']:.1f}%",
results["explanation"]
)
except Exception as e:
# Catch and display any errors during the process
return (
"Error",
"0%",
f"Error processing video/audio: {e}. Please ensure the URL is valid and publicly accessible."
)
# Create the Gradio interface
iface = gr.Interface(
fn=analyze_from_url,
inputs=gr.Textbox(
label="Enter Public Video URL (YouTube or direct MP4)",
placeholder="e.g., https://www.youtube.com/watch?v=dQw4w9WgXcQ or https://samplelib.com/lib/preview/mp4/sample-5s.mp4"
),
outputs=[
gr.Textbox(label="Detected Accent"),
gr.Textbox(label="Confidence Score"),
gr.Textbox(label="Explanation")
],
title="English Accent Analyzer (Rule-Based Demo)",
description="""
Paste a public video URL (YouTube or direct MP4) to detect the English accent and confidence score.
**Important Notes:**
* This is a **DEMO** using a simulated accent analysis model, not a real machine learning model.
* It uses `pytubefix` for YouTube links and `requests`/`moviepy` for direct MP4s.
* YouTube video extraction can sometimes be temperamental due to YouTube's changing policies or region restrictions. Direct MP4 links are generally more reliable.
* **Sample MP4 URL for testing:** `https://samplelib.com/lib/preview/mp4/sample-5s.mp4`
"""
)
# Launch the Gradio interface
# `share=False` for local deployment (no public link generated)
# For Hugging Face Spaces, you typically don't need `iface.launch()` as the platform handles it.
# However, if you're running it locally to test before deployment, keep this block.
if __name__ == "__main__":
iface.launch(debug=True, share=False)
|