ControlNet / app.py
FrankFacundo's picture
WIP
d76eab0
import numpy as np
import gradio as gr
import spaces
import os
import random
import subprocess
import torch
from PIL import Image
import cv2
from huggingface_hub import login
from diffusers import FluxControlNetPipeline, FluxControlNetModel
from diffusers.models import FluxMultiControlNetModel
import warnings
from typing import Tuple
"""
FLUX‑1 ControlNet demo
----------------------
This script rebuilds the Gradio interface shown in your screenshot with **one** control‑image upload
slot and integrates the FLUX.1‑dev‑ControlNet‑Union‑Pro model.
Key points
~~~~~~~~~~
* Single *control image* input (left).
* *Result* and *Pre‑processed Cond* previews side‑by‑side (center & right).
* *Prompt* textbox plus a dedicated **ControlNet** panel for choosing the mode and strength.
* Seed handling with optional randomisation.
* Advanced sliders for *Guidance scale* and *Inference steps*.
* Works on CUDA (bfloat16) or CPU (float32).
* Minimal Canny preview implementation when the *canny* mode is selected (extend as you like for the
other modes).
Before running, set the `HUGGINGFACE_TOKEN` environment variable **or** call
`login("<YOUR_HF_TOKEN>")` explicitly.
"""
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
# --------------------------------------------------
# ModelΒ & pipeline setup
# --------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN_NEW")
login(HF_TOKEN)
# If you prefer to hard‑code the token, uncomment:
# login("hf_your_token_here")
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
CONTROLNET_MODEL = "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
controlnet_single = FluxControlNetModel.from_pretrained(
CONTROLNET_MODEL, torch_dtype=dtype
)
controlnet = FluxMultiControlNetModel([controlnet_single])
pipe = FluxControlNetPipeline.from_pretrained(
BASE_MODEL, controlnet=controlnet, torch_dtype=dtype
).to(device)
pipe.set_progress_bar_config(disable=True)
# --------------------------------------------------
# UI ‑> model value mapping
# --------------------------------------------------
MODE_MAPPING = {
"canny": 0,
"tile": 1,
"depth": 2,
"blur": 3,
"pose": 4,
"gray": 5,
"low quality": 6,
}
MAX_SEED = 100
# -----------------------------------------------------------------------------
# Preview helpers – one small, self‑contained function per mode
# -----------------------------------------------------------------------------
def _preview_canny(
pil_img: Image.Image, canny_threshold_1: int, canny_threshold_2: int
) -> Image.Image:
"""Fast Canny‑edge preview (already implemented)."""
arr = np.array(pil_img.convert("RGB"))
edges = cv2.Canny(arr, threshold1=canny_threshold_1, threshold2=canny_threshold_2)
edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
return Image.fromarray(edges_rgb)
# ――― tile ―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
def _preview_tile(pil_img: Image.Image, grid: Tuple[int, int] = (2, 2)) -> Image.Image:
"""Replicates *pil_img* into an *nΓ—m* tiled grid (default 2Γ—2).
This offers a quick visual hint of what a *tiling* control mode will do
(repeatable textures, etc.)."""
cols, rows = grid
img_rgb = pil_img.convert("RGB")
w, h = img_rgb.size
tiled = Image.new("RGB", (w * cols, h * rows))
for c in range(cols):
for r in range(rows):
tiled.paste(img_rgb, (c * w, r * h))
return tiled
# ――― depth ――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
def _preview_depth(pil_img: Image.Image) -> Image.Image:
"""Very rough *depth* proxy using the Laplacian and a colormap.
β–Έ Convert to gray
β–Έ Run Laplacian to highlight depth‑like gradients
β–Έ Apply a TURBO colormap to mimic depth heat‑map appearance"""
gray = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2GRAY)
lap = cv2.Laplacian(gray, cv2.CV_16S, ksize=3)
depth = cv2.convertScaleAbs(lap)
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_TURBO)
return Image.fromarray(depth_color)
# ――― blur ――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
def _preview_blur(pil_img: Image.Image, ksize: int = 15) -> Image.Image:
"""Gaussian blur preview.
A single, relatively large kernel is enough for UI illustration."""
if ksize % 2 == 0:
ksize += 1 # kernel must be odd
blurred = cv2.GaussianBlur(np.array(pil_img), (ksize, ksize), sigmaX=0)
return Image.fromarray(blurred)
# ――― pose ―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
def _preview_pose(pil_img: Image.Image) -> Image.Image:
"""Attempt a lightweight 2‑D pose overlay using *mediapipe* if available.
If *mediapipe* is not installed (or CPU inference fails), we gracefully
fallback to an edge‑map preview so the UI never crashes."""
try:
import mediapipe as mp # type: ignore
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
img_bgr = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
with mp_pose.Pose(static_image_mode=True) as pose_estimator:
results = pose_estimator.process(
img_bgr[..., ::-1]
) # Mediapipe expects RGB
annotated = img_bgr.copy()
if results.pose_landmarks:
mp_drawing.draw_landmarks(
annotated, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
)
annotated_rgb = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB)
return Image.fromarray(annotated_rgb)
except Exception as exc: # pragma: no cover – any import / runtime error
warnings.warn(
f"Pose preview failed ({exc!s}); falling back to Canny.", RuntimeWarning
)
# Return an edge map as a sensible fallback rather than exploding the UI
return _preview_canny(pil_img, 100, 200)
# ――― gray ――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
def _preview_gray(pil_img: Image.Image) -> Image.Image:
"""Simple grayscale conversion, but keep a 3‑channel RGB image so the UI
widget pipeline stays consistent."""
gray = cv2.cvtColor(np.array(pil_img.convert("RGB")), cv2.COLOR_RGB2GRAY)
gray_rgb = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
return Image.fromarray(gray_rgb)
# ――― low quality ――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
def _preview_low_quality(pil_img: Image.Image, factor: int = 8) -> Image.Image:
"""Mimic a low‑quality thumbnail: aggressively downsample then upscale.
The default *factor* (8Γ—) is chosen to make artefacts obvious."""
img_rgb = pil_img.convert("RGB")
w, h = img_rgb.size
small = img_rgb.resize((max(1, w // factor), max(1, h // factor)), Image.BILINEAR)
low_q = small.resize(
(w, h), Image.NEAREST
) # upsample w/ Nearest to exaggerate blocks
return low_q
# -----------------------------------------------------------------------------
# Master dispatch
# -----------------------------------------------------------------------------
def _make_preview(
control_image: Image.Image,
mode: str,
canny_threshold_1: int = 100,
canny_threshold_2: int = 200,
) -> Image.Image:
"""Return a *quick‑n‑dirty* preview image for the requested *mode*.
Parameters
----------
control_image : PIL.Image
The input image selected by the user.
mode : str
One of the keys of :data:`MODE_MAPPING`.
canny_threshold_1 / 2 : int, optional
Only used if *mode* is "canny" (passed straight to OpenCV Canny).
"""
mode = mode.lower()
if mode not in MODE_MAPPING:
warnings.warn(f"Unknown preview mode '{mode}'. Returning untouched image.")
return control_image
if mode == "canny":
return _preview_canny(control_image, canny_threshold_1, canny_threshold_2)
if mode == "tile":
return _preview_tile(control_image)
if mode == "depth":
return _preview_depth(control_image)
if mode == "blur":
return _preview_blur(control_image)
if mode == "pose":
return _preview_pose(control_image)
if mode == "gray":
return _preview_gray(control_image)
if mode == "low quality":
return _preview_low_quality(control_image)
# Fallback – should never happen due to early mode check
return control_image
# --------------------------------------------------
# Inference function
# --------------------------------------------------
@spaces.GPU
def infer(
control_image: Image.Image,
prompt: str,
mode: str,
control_strength: float,
seed: int,
randomize_seed: bool,
guidance_scale: float,
num_inference_steps: int,
canny_threshold_1: int,
canny_threshold_2: int,
):
if control_image is None:
raise gr.Error("Please upload a control image first.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
gen = torch.Generator(device).manual_seed(seed)
w, h = control_image.size
preprocessed = _make_preview(
control_image, mode, canny_threshold_1, canny_threshold_2
)
result = pipe(
prompt=prompt,
control_image=[preprocessed],
control_mode=[MODE_MAPPING[mode]],
width=w,
height=h,
controlnet_conditioning_scale=[control_strength],
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=gen,
).images[0]
return result, seed, preprocessed
# --------------------------------------------------
# GradioΒ UI
# --------------------------------------------------
css = """#wrapper {max-width: 960px; margin: 0 auto;}"""
with gr.Blocks(css=css, elem_id="wrapper") as demo:
gr.Markdown("## FLUX.1‑dev‑ControlNet‑Union‑Pro by Frank")
gr.Markdown(
"A unified ControlNet for **FLUX.1‑dev** from the InstantX team and Shakker Labs. "
+ "Recommended strengths: *cannyΒ 0.76*. Long prompts usually help."
)
# ------------ Image panel row ------------
with gr.Row():
control_image = gr.Image(
label="Upload animage",
type="pil",
height=512 + 256,
)
result_image = gr.Image(label="Result", height=512 + 256)
preview_image = gr.Image(label="Pre‑processed Cond", height=512 + 256)
# ------------ Prompt ------------
prompt_txt = gr.Textbox(label="Prompt", value="White background", lines=1)
# ------------ ControlNet settings ------------
with gr.Row():
with gr.Column():
gr.Markdown("### ControlNet")
mode_radio = gr.Radio(
choices=list(MODE_MAPPING.keys()), value="canny", label="Mode"
)
strength_slider = gr.Slider(
0.0, 1.0, value=0.76, step=0.01, label="control strength"
)
gr.Markdown("### Preprocess")
canny_threshold_1 = gr.Slider(
0, 500, step=1, value=100, label="Canny threshold 1"
)
canny_threshold_2 = gr.Slider(
0, 500, step=1, value=200, label="Canny threshold 2"
)
with gr.Column():
seed_slider = gr.Slider(0, MAX_SEED, step=1, value=42, label="Seed")
randomize_chk = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(
0.0, 10.0, step=0.1, value=3.5, label="Guidance scale"
)
steps_slider = gr.Slider(1, 50, step=1, value=50, label="Inference steps")
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=infer,
inputs=[
control_image,
prompt_txt,
mode_radio,
strength_slider,
seed_slider,
randomize_chk,
guidance_slider,
steps_slider,
canny_threshold_1,
canny_threshold_2,
],
outputs=[result_image, seed_slider, preview_image],
)
if __name__ == "__main__":
demo.launch()