Mr.Events / app.py
Futuresony's picture
Update app.py
b06c491 verified
# app.py - Combined Script
# Combined Imports
import os
import gradio as gr
from huggingface_hub import InferenceClient
import torch
import re
import warnings
import time
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer, util, CrossEncoder
import gspread
# from google.colab import auth
from google.auth import default
from tqdm import tqdm
from ddgs import DDGS # Updated import
import spacy
from datetime import date, timedelta, datetime # Import datetime
from dateutil.relativedelta import relativedelta # Corrected typo
import traceback # Import traceback
import base64 # Import base64
import dateparser # Import dateparser
from dateparser.search import search_dates
import pytz # Import pytz for timezone handling
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Define global variables and load secrets
HF_TOKEN = os.getenv("HF_TOKEN")
# Add a print statement to check if HF_TOKEN is loaded
print(f"HF_TOKEN loaded: {'*' * len(HF_TOKEN) if HF_TOKEN else 'None'}")
SHEET_ID = "19ipxC2vHYhpXCefpxpIkpeYdI43a1Ku2kYwecgUULIw"
GOOGLE_BASE64_CREDENTIALS = os.getenv("GOOGLE_BASE64_CREDENTIALS")
# Initialize InferenceClient
# client = InferenceClient("google/gemma-2-9b-it", token=HF_TOKEN)
# client = InferenceClient("meta-llama/Llama-4-Scout-17B-16E-Instruct", token=HF_TOKEN)
client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct", token=HF_TOKEN)
# Load spacy model for sentence splitting
nlp = None
try:
nlp = spacy.load("en_core_web_sm")
print("SpaCy model 'en_core_web_sm' loaded.")
except OSError:
print("SpaCy model 'en_core_web_sm' not found. Downloading...")
try:
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
print("SpaCy model 'en_core_web_sm' downloaded and loaded.")
except Exception as e:
print(f"Failed to download or load SpaCy model: {e}")
# Load SentenceTransformer for RAG/business info retrieval and semantic detection
embedder = None
try:
print("Attempting to load Sentence Transformer (sentence-transformers/paraphrase-MiniLM-L6-v2)...")
# Use the model provided by the user for semantic detection as well
embedder = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2") # Or 'all-MiniLM-L6-v2' if preferred
print("Sentence Transformer loaded.")
except Exception as e:
print(f"Error loading Sentence Transformer: {e}")
# Load a Cross-Encoder model for re-ranking retrieved documents
reranker = None
try:
print("Attempting to load Cross-Encoder Reranker (cross-encoder/ms-marco-MiniLM-L6-v2)...")
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
print("Cross-Encoder Reranker loaded.")
except Exception as e:
print(f"Error loading Cross-Encoder Reranker: {e}")
print("Please ensure the model identifier 'cross-encoder/ms-marco-MiniLM-L6-v2' is correct and accessible on Hugging Face Hub.")
print(traceback.format_exc())
reranker = None
# Google Sheets Authentication
gc = None # Global variable for gspread client
def authenticate_google_sheets():
"""Authenticates with Google Sheets using base64 encoded credentials."""
global gc
print("Authenticating Google Account...")
if not GOOGLE_BASE64_CREDENTIALS:
print("Error: GOOGLE_BASE64_CREDENTIALS secret not found.")
return False
try:
# Decode the base64 credentials
credentials_json = base64.b64decode(GOOGLE_BASE64_CREDENTIALS).decode('utf-8')
credentials = json.loads(credentials_json)
# Authenticate using service account from dictionary
gc = gspread.service_account_from_dict(credentials)
print("Google Sheets authentication successful via service account.")
return True
except Exception as e:
print(f"Google Sheets authentication failed: {e}")
print("Please ensure your GOOGLE_BASE64_CREDENTIALS secret is correctly set and contains valid service account credentials.")
print(traceback.format_exc())
return False
# Google Sheets Data Loading and Embedding
data = [] # Global variable to store loaded data
descriptions_for_embedding = []
embeddings = torch.tensor([])
business_info_available = False # Flag to indicate if business info was loaded successfully
def load_business_info():
"""Loads business information from Google Sheet and creates embeddings."""
global data, descriptions_for_embedding, embeddings, business_info_available
business_info_available = False # Reset flag
if gc is None:
print("Skipping Google Sheet loading: Google Sheets client not authenticated.")
return
if not SHEET_ID:
print("Error: SHEET_ID not set.")
return
try:
sheet = gc.open_by_key(SHEET_ID).sheet1
print(f"Successfully opened Google Sheet with ID: {SHEET_ID}")
data_records = sheet.get_all_records()
if not data_records:
print(f"Warning: No data records found in Google Sheet with ID: {SHEET_ID}")
data = []
descriptions_for_embedding = []
else:
# Filter out rows missing 'Service' or 'Description'
filtered_data = [row for row in data_records if row.get('Service') and row.get('Description')]
if not filtered_data:
print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
data = []
descriptions_for_embedding = []
else:
data = filtered_data
# Use BOTH Service and Description for embedding
descriptions_for_embedding = [f"Service: {row['Service']}. Description: {row['Description']}" for row in data]
# Only encode if descriptions_for_embedding are found and embedder is available
if descriptions_for_embedding and embedder is not None:
print("Encoding descriptions...")
try:
embeddings = embedder.encode(descriptions_for_embedding, convert_to_tensor=True)
print("Encoding complete.")
business_info_available = True
except Exception as e:
print(f"Error during description encoding: {e}")
embeddings = torch.tensor([])
business_info_available = False
else:
print("Skipping encoding descriptions: No descriptions found or embedder not available.")
embeddings = torch.tensor([])
business_info_available = False
print(f"Loaded {len(descriptions_for_embedding)} entries from Google Sheet for embedding/RAG.")
if not business_info_available:
print("Business information retrieval (RAG) is NOT available.")
except gspread.exceptions.SpreadsheetNotFound:
print(f"Error: Google Sheet with ID '{SHEET_ID}' not found.")
print("Please check the SHEET_ID and ensure your authenticated Google Account has access to this sheet.")
business_info_available = False
except Exception as e:
print(f"An error occurred while accessing the Google Sheet: {e}")
print(traceback.format_exc())
business_info_available = False
# Business Info Retrieval (RAG)
def retrieve_business_info(query: str, top_n: int = 3) -> list:
"""
Retrieves relevant business information from loaded data based on a query.
Args:
query: The user's query string.
top_n: The number of top relevant entries to retrieve.
Returns:
A list of dictionaries, where each dictionary is a relevant row from the
Google Sheet data. Returns an empty list if RAG is not available or
no relevant information is found.
"""
global data
if not business_info_available or embedder is None or not descriptions_for_embedding or not data:
print("Business information retrieval is not available or data is empty.")
return []
try:
query_embedding = embedder.encode(query, convert_to_tensor=True)
cosine_scores = util.cos_sim(query_embedding, embeddings)[0]
top_results_indices = torch.topk(cosine_scores, k=min(top_n, len(data)))[1].tolist()
top_results = [data[i] for i in top_results_indices]
if reranker is not None and top_results:
print("Re-ranking top results...")
rerank_pairs = [(query, descriptions_for_embedding[i]) for i in top_results_indices]
rerank_scores = reranker.predict(rerank_pairs)
reranked_indices = sorted(range(len(rerank_scores)), key=lambda i: rerank_scores[i], reverse=True)
reranked_results = [top_results[i] for i in reranked_indices]
print("Re-ranking complete.")
return reranked_results
else:
return top_results
except Exception as e:
print(f"Error during business information retrieval: {e}")
print(traceback.format_exc())
return []
# Function to perform DuckDuckGo Search and return results with URLs
def perform_duckduckgo_search(query: str, max_results: int = 5): # Reduced max_results for multi-part queries
"""
Performs a search using DuckDuckGo and returns a list of dictionaries.
Includes a delay to avoid rate limits.
Returns an empty list and prints an error if search fails.
"""
print(f"Executing Tool: perform_duckduckgo_search with query='{query}')")
search_results_list = []
try:
time.sleep(1)
with DDGS() as ddgs:
search_query = query.strip()
if not search_query or len(search_query.split()) < 2:
print(f"Skipping search for short query: '{search_query}'")
return []
print(f"Sending search query to DuckDuckGo: '{search_query}'")
results_generator = ddgs.text(search_query, max_results=max_results)
results_found = False
for r in results_generator:
search_results_list.append(r)
results_found = True
print(f"Raw results from DuckDuckGo: {search_results_list}")
if not results_found and max_results > 0:
print(f"DuckDuckGo search for '{search_query}' returned no results.")
elif results_found:
print(f"DuckDuckGo search for '{search_query}' completed. Found {len(search_results_list)} results.")
except Exception as e:
print(f"Error during Duckduckgo search for '{search_query if 'search_query' in locals() else query}': {e}")
print(traceback.format_exc())
return []
return search_results_list
# Define the new semantic date/time detection and calculation function using dateparser
def perform_date_calculation(query: str) -> str or None:
"""
Analyzes query for date/time information using dateparser.
If dateparser finds a date, it returns a human-friendly response string.
Otherwise, it returns None.
It is designed to handle multiple languages and provide the time for East Africa (Tanzania).
"""
print(f"Executing Tool: perform_date_calculation with query='{query}') using dateparser.search_dates")
try:
eafrica_tz = pytz.timezone('Africa/Dar_es_Salaam')
now = datetime.now(eafrica_tz)
except pytz.UnknownTimeZoneError:
print("Error: Unknown timezone 'Africa/Dar_es_Salaam'. Using default system time.")
now = datetime.now()
try:
# Try parsing with Swahili first, then English
found = search_dates(
query,
settings={
"PREFER_DATES_FROM": "future",
"RELATIVE_BASE": now
},
languages=['sw', 'en'] # Prioritize Swahili
)
if not found:
print("dateparser.search_dates could not parse any date/time.")
return None
text_snippet, parsed = found[0]
print(f"dateparser.search_dates found: text='{text_snippet}', parsed='{parsed}'")
is_swahili = any(swahili_phrase in query.lower() for swahili_phrase in ['tarehe', 'siku', 'saa', 'muda', 'leo', 'kesho', 'jana', 'ngapi', 'gani', 'mwezi', 'mwaka'])
# Handle timezone information
if now.tzinfo is not None and parsed.tzinfo is None:
parsed = now.tzinfo.localize(parsed)
elif now.tzinfo is None and parsed.tzinfo is not None:
parsed = parsed.replace(tzinfo=None)
# Check if the parsed date is today and time is close to now or midnight
if parsed.date() == now.date():
# Consider it "now" if within a small time window or if no specific time was parsed (midnight)
if abs((parsed - now).total_seconds()) < 60 or parsed.time() == datetime.min.time():
print("Query parsed to today's date and time is close to 'now' or midnight, returning current time/date.")
if is_swahili:
return f"Kwa saa za Afrika Mashariki (Tanzania), tarehe ya leo ni {now.strftime('%A, %d %B %Y')} na saa ni {now.strftime('%H:%M:%S')}."
else:
return f"In East Africa (Tanzania), the current date is {now.strftime('%A, %d %B %Y')} and the time is {now.strftime('%H:%M:%S')}."
else:
print(f"Query parsed to a specific time today: {parsed.strftime('%H:%M:%S')}")
if is_swahili:
return f"Hiyo inafanyika leo, {parsed.strftime('%A, %d %B %Y')}, saa {parsed.strftime('%H:%M:%S')} saa za Afrika Mashariki."
else:
return f"That falls on today, {parsed.strftime('%A, %d %B %Y')}, at {parsed.strftime('%H:%M:%S')} East Africa Time."
else:
print(f"Query parsed to a specific date: {parsed.strftime('%A, %d %B %Y')} at {parsed.strftime('%H:%M:%S')}")
time_str = parsed.strftime('%H:%M:%S')
date_str = parsed.strftime('%A, %d %B %Y')
if parsed.tzinfo:
tz_name = parsed.tzinfo.tzname(parsed) or 'UTC'
if is_swahili:
return f"Hiyo inafanyika tarehe {date_str} saa {time_str} {tz_name}."
else:
return f"That falls on {date_str} at {time_str} {tz_name}."
else:
if is_swahili:
return f"Hiyo inafanyika tarehe {date_str} saa {time_str}."
else:
return f"That falls on {date_str} at {time_str}."
except Exception as e:
print(f"Error during dateparser.search_dates execution: {e}")
print(traceback.format_exc())
return f"An error occurred while parsing date/time: {e}"
# Function to determine if a query requires a tool or can be answered directly
def determine_tool_usage(query: str) -> str:
"""
Analyzes the query to determine if a specific tool is needed.
Returns the name of the tool ('duckduckgo_search', 'business_info_retrieval',
'date_calculation') or 'none' if no specific tool is clearly indicated.
Prioritizes business information retrieval, then specific tools based on keywords
and LLM judgment.
"""
query_lower = query.lower()
# 1. Prioritize Business Info Retrieval if RAG is available
if business_info_available:
messages_business_check = [{"role": "user", "content": f"Does the following query ask about a specific person, service, offering, or description that is likely to be found *only* within a specific business's internal knowledge base, and not general knowledge? For example, questions about 'Salum' or 'Jackson Kisanga' are likely business-related, while questions about 'the current president of the USA' or 'who won the Ballon d'Or' are general knowledge. Answer only 'yes' or 'no'. Query: {query}"}]
try:
business_check_response = client.chat_completion(
messages=messages_business_check,
max_tokens=10,
temperature=0.1
).choices[0].message.content.strip().lower()
# Ensure the response explicitly contains "yes" and is not just a substring match
if business_check_response == "yes":
print(f"Detected as specific business info query based on LLM check: '{query}'")
return "business_info_retrieval"
else:
print(f"LLM check indicates not a specific business info query: '{query}'")
except Exception as e:
print(f"Error during LLM call for business info check for query '{query}': {e}")
print(traceback.format_exc())
print(f"Proceeding without business info check for query '{query}' due to error.")
# 2. Check for Date Calculation
date_time_check_result = perform_date_calculation(query)
if date_time_check_result is not None:
print(f"Detected as date/time calculation query based on dateparser result for: '{query}'")
return "date_calculation"
# 3. Use LLM to determine if DuckDuckGo search is needed
messages_tool_determination_search = [{"role": "user", "content": f"Does the following query require searching the web for current or general knowledge information (e.g., news, facts, definitions, current events)? Respond ONLY with 'duckduckgo_search' or 'none'. Query: {query}"}]
try:
search_determination_response = client.chat_completion(
messages=messages_tool_determination_search,
max_tokens=20,
temperature=0.1,
top_p=0.9
).choices[0].message.content or ""
response_lower = search_determination_response.strip().lower()
if "duckduckgo_search" in response_lower:
print(f"Model-determined tool for '{query}': 'duckduckgo_search'")
return "duckduckgo_search"
else:
print(f"Model-determined tool for '{query}': 'none' (for search)")
except Exception as e:
print(f"Error during LLM call for search tool determination for query '{query}': {e}")
print(traceback.format_exc())
print(f"Proceeding without search tool check for query '{query}' due to error.")
# 4. If none of the specific tools are determined, default to 'none'
print(f"No specific tool determined for '{query}'. Defaulting to 'none'.")
return "none"
# Function to generate text using the LLM, incorporating tool results if available
def generate_text(prompt: str, tool_results: dict = None) -> str:
"""
Generates text using the configured LLM, optionally incorporating tool results.
Args:
prompt: The initial prompt for the LLM.
tool_results: A dictionary containing results from executed tools.
Keys are tool names, values are their outputs.
Returns:
The generated text from the LLM.
"""
# Add persona instructions to the beginning of the prompt
persona_instructions = """You are absa_ai, an AI developed on August 7, 2025, by the absa team. Your knowledge about business data comes from the company's internal Google Sheet.
"""
full_prompt_builder = [persona_instructions, prompt]
if tool_results and any(tool_results.values()):
full_prompt_builder.append("\n\nTool Results:\n")
for question, results in tool_results.items(): # Iterate through results per question
if results:
full_prompt_builder.append(f"--- Results for: {question} ---\n") # Add question context
if isinstance(results, list):
for i, result in enumerate(results):
# Check if the result is from business info retrieval
if isinstance(result, dict) and 'Service' in result and 'Description' in result:
full_prompt_builder.append(f"Business Info {i+1}:\nService: {result.get('Service', 'N/A')}\nDescription: {result.get('Description', 'N/A')}\n\n")
elif isinstance(result, dict) and 'url' in result: # Check if the result is from DuckDuckGo
full_prompt_builder.append(f"Search Result {i+1}:\nTitle: {result.get('title', 'N/A')}\nURL: {result.get('url', 'N/A')}\nSnippet: {result.get('body', 'N/A')}\n\n")
else:
full_prompt_builder.append(f"{result}\n\n") # Handle other list items
elif isinstance(results, dict):
for key, value in results.items():
full_prompt_builder.append(f"{key}: {value}\n")
full_prompt_builder.append("\n")
else:
full_prompt_builder.append(f"{results}\n\n") # Handle single string results (like date calculation)
full_prompt_builder.append("Based on the provided tool results, answer the user's original query. If a question was answered by a tool, use the tool's result directly in your response.")
print("Added tool results and instruction to final prompt.")
else:
print("No tool results to add to final prompt.")
full_prompt = "".join(full_prompt_builder)
print(f"Sending prompt to LLM:\n---\n{full_prompt}\n---")
generation_config = {
"temperature": 0.7,
"max_new_tokens": 500,
"top_p": 0.95,
"top_k": 50,
"do_sample": True,
}
try:
response = client.chat_completion(
messages=[
{"role": "user", "content": full_prompt}
],
max_tokens=generation_config.get("max_new_tokens", 512),
temperature=generation_config.get("temperature", 0.7),
top_p=generation_config.get("top_p", 0.95)
).choices[0].message.content or ""
print("LLM generation successful using chat_completion.")
return response
except Exception as e:
print(f"Error during final LLM generation: {e}")
print(traceback.format_exc())
return "An error occurred while generating the final response."
# Main chat function with query breakdown and tool execution per question
def chat(query: str):
"""
Processes user queries by breaking down multi-part queries, determining and
executing appropriate tools for each question, and synthesizing results
using the LLM. Prioritizes business information retrieval.
"""
print(f"Received query: {query}")
# Step 1: Query Breakdown
print("\n--- Breaking down query ---")
prompt_for_question_breakdown = f"""
Analyze the following query and list each distinct question found within it.
Present each question on a new line, starting with a hyphen.
Query: {query}
"""
try:
messages_question_breakdown = [{"role": "user", "content": prompt_for_question_breakdown}]
question_breakdown_response = client.chat_completion(
messages=messages_question_breakdown,
max_tokens=100,
temperature=0.1,
top_p=0.9
).choices[0].message.content or ""
individual_questions = [line.strip() for line in question_breakdown_response.split('\n') if line.strip()]
cleaned_questions = [re.sub(r'^[-*]?\s*', '', q) for q in individual_questions]
print("Individual questions identified:")
for q in cleaned_questions:
print(f"- {q}")
except Exception as e:
print(f"Error during LLM call for question breakdown: {e}")
print(traceback.format_exc())
cleaned_questions = [query] # Fallback to treating the whole query as one question
# Step 2: Tool Determination per Question
print("\n--- Determining tools per question ---")
determined_tools = {}
for question in cleaned_questions:
print(f"\nAnalyzing question for tool determination: '{question}'")
determined_tools[question] = determine_tool_usage(question)
print(f"Determined tool for '{question}': '{determined_tools[question]}'")
print("\nSummary of determined tools per question:")
for question, tool in determined_tools.items():
print(f"'{question}': '{tool}'")
# Step 3: Execute Tools and Step 4: Synthesize Results
print("\n--- Executing tools and collecting results ---")
tool_results = {}
for question, tool in determined_tools.items():
print(f"\nExecuting tool '{tool}' for question: '{question}'")
result = None
if tool == "date_calculation":
result = perform_date_calculation(question)
elif tool == "duckduckgo_search":
result = perform_duckduckgo_search(question)
elif tool == "business_info_retrieval":
result = retrieve_business_info(question)
elif tool == "none":
# If tool is 'none', the LLM will answer this part using its internal knowledge
# in the final response generation step. We don't need a specific tool result here.
print(f"Skipping tool execution for question: '{question}' as tool is 'none'. LLM will handle.")
result = None # Set result to None so it's not included in tool_results for 'none' tool
# Only store results if they are not None (i.e., tool was executed and returned something)
if result is not None:
tool_results[question] = result
print("\n--- Collected Tool Results ---")
if tool_results:
for question, result in tool_results.items():
print(f"\nQuestion: {question}")
print(f"Result: {result}")
else:
print("No tool results were collected.")
print("\n--------------------------")
# Step 5: Final Response Generation
print("\n--- Generating final response ---")
# The generate_text function already handles incorporating tool results if provided
final_response = generate_text(query, tool_results)
print("\n--- Final Response from LLM ---")
print(final_response)
print("\n----------------------------")
return final_response
# Keep the Gradio interface setup as is for now
if __name__ == "__main__":
# Authenticate Google Sheets when the script starts
authenticate_google_sheets()
# Load business info after authentication
load_business_info()
# Check if spacy model, embedder, and reranker loaded correctly
if nlp is None:
print("Warning: SpaCy model not loaded. Sentence splitting may not work correctly.")
if embedder is None:
print("Warning: Sentence Transformer (embedder) not loaded. RAG will not be available.")
if reranker is None:
print("Warning: Cross-Encoder Reranker not loaded. Re-ranking of RAG results will not be performed.")
if not business_info_available:
print("Warning: Business information (Google Sheet data) not loaded successfully. "
"RAG will not be available. Please ensure the GOOGLE_BASE64_CREDENTIALS secret is set correctly.")
print("Launching Gradio Interface...")
import gradio as gr
with gr.Blocks(theme="soft") as demo:
gr.Markdown(
"""
# LLM with Tools (DuckDuckGo Search, Date Calculation, Business Info RAG)
Ask me anything! I can perform web searches, calculate dates, and retrieve business information.
"""
)
with gr.Row():
with gr.Column(scale=3):
query = gr.Textbox(
label="Query",
placeholder="Enter your query here....",
lines=3,
interactive=True
)
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
with gr.Column(scale=3):
output = gr.Textbox(
label="Output",
lines=8,
interactive=False
)
# Button actions
submit_btn.click(fn=chat, inputs=query, outputs=output)
clear_btn.click(fn=lambda: "", inputs=None, outputs=output)
try:
demo.launch(debug=True)
except Exception as e:
print(f"Error launching Gradio interface: {e}")
print(traceback.format_exc())
print("Please check the console output for more details on the error.")