chatfed_generator / README.md
leavoigt's picture
add files
287959e
---
title: ChatFed Generator
emoji: 🤖
colorFrom: blue
colorTo: purple
sdk: docker
pinned: false
license: mit
---
# ChatFed Generator - MCP Server
A language model-based generation service designed for ChatFed RAG (Retrieval-Augmented Generation) pipelines. This module serves as an **MCP (Model Context Protocol) server** that generates contextual responses using configurable LLM providers with support for retrieval result processing.
## MCP Endpoint
The main MCP function is `generate` which provides context-aware text generation using configurable LLM providers when properly configured with API credentials.
**Parameters**:
- `query` (str, required): The question or query to be answered
- `context` (str|list, required): Context for answering - can be plain text or list of retrieval result dictionaries
**Returns**: String containing the generated answer based on the provided context and query.
**Example usage**:
```python
from gradio_client import Client
client = Client("ENTER CONTAINER URL / SPACE ID")
result = client.predict(
query="What are the key findings?",
context="Your relevant documents or context here...",
api_name="/generate"
)
print(result)
```
## Configuration
### LLM Provider Configuration
1. Set your preferred inference provider in `params.cfg`
2. Configure the model and generation parameters
3. Set the required API key environment variable
4. [Optional] Adjust temperature and max_tokens settings
5. Run the app:
```bash
docker build -t chatfed-generator .
docker run -p 7860:7860 chatfed-generator
```
## Environment Variables Required
# Make sure to set the appropriate environment variables:
# - OpenAI: `OPENAI_API_KEY`
# - Anthropic: `ANTHROPIC_API_KEY`
# - Cohere: `COHERE_API_KEY`
# - HuggingFace: `HF_TOKEN`