Spaces:
Sleeping
Sleeping
title: EUDR Retriever | |
emoji: 🐠 | |
colorFrom: yellow | |
colorTo: pink | |
sdk: docker | |
pinned: false | |
# ChatFed Retriever - MCP Server | |
A semantic document retrieval and reranking service designed for ChatFed RAG (Retrieval-Augmented Generation) pipelines. This module serves as an **MCP (Model Context Protocol) server** that retrieves semantically similar documents from vector databases with optional cross-encoder reranking. | |
## MCP Endpoint | |
The main MCP function is `retrieve_mcp` which provides a top_k retrieval and reranking function when properly connected to an external vector database. | |
**Parameters**: | |
- `query` (str, required): The search query text | |
- `reports_filter` (str, optional): Comma-separated list of specific report filenames | |
- `sources_filter` (str, optional): Filter by document source type | |
- `subtype_filter` (str, optional): Filter by document subtype | |
- `year_filter` (str, optional): Comma-separated list of years to filter by | |
**Returns**: List of dictionaries containing: | |
- `answer`: Document content | |
- `answer_metadata`: Document metadata | |
- `score`: Relevance score [disabled when reranker used] | |
**Example useage**: | |
```python | |
from gradio_client import Client | |
client = Client("ENTER CONTAINER URL / SPACE ID") | |
result = client.predict( | |
query="...", | |
reports_filter="", | |
sources_filter="", | |
subtype_filter="", | |
year_filter="", | |
api_name="/retrieve_mcp" | |
) | |
print(result) | |
``` | |
## Configuration | |
### Vector Store Configuration | |
1. Set your data source according to the provider | |
2. Set the embedding model to match the data source | |
3. Set the retriever parameters | |
4. [Optional] Set the reranker parameters | |
5. Run the app: | |
```bash | |
docker build -t chatfed-retriever . | |
docker run -p 7860:7860 chatfed-retriever | |
``` | |