rag-as-a-service / README.md
GenAIDevTOProd's picture
Update README.md
06fbd49 verified
---
title: Rag As A Service
emoji: πŸ“‰
colorFrom: purple
colorTo: pink
sdk: gradio
sdk_version: 5.42.0
app_file: app.py
pinned: false
license: apache-2.0
short_description: Minimal RAG API with MiniLM embeddings and FAISS
---
# RAG API (Minimal) β€” MiniLM + FAISS (Gradio)
Minimal Retrieval-Augmented Generation (RAG) service built with:
- **Sentence-Transformers MiniLM** for embeddings
- **FAISS** for vector search (cosine similarity)
- **Gradio** for both UI and API exposure
---
## Features
- Ingest documents (one per line) with configurable chunk size/overlap
- Query top-K relevant chunks with similarity search
- Get concise answers composed from retrieved context
- Reset index at any time
- Call endpoints via **UI or API** (`/api/ingest`, `/api/answer`, `/api/reset`)
---
## Quick Start
1. **Load sample docs β†’ Ingest β†’ Ask a query** using the Gradio UI.
2. Programmatic access:
## ```bash
## Ingest
curl -s -X POST https://<your-space>.hf.space/api/ingest \
-H "content-type: application/json" \
-d '{"data": ["PySpark scales ETL across clusters.\nFAISS powers fast vector similarity search used in retrieval.", 256, 32]}'
# Answer
curl -s -X POST https://<your-space>.hf.space/api/answer \
-H "content-type: application/json" \
-d '{"data": ["What does FAISS do?", 5, 1000]}'
## Python Client
from gradio_client import Client
client = Client("https://<your-space>.hf.space")
status, size = client.predict("FAISS powers fast vector search.", 256, 32, api_name="/ingest")
res = client.predict("What does FAISS do?", 5, 1000, api_name="/answer")
print(res["answer"])
## Tech Stack
- Embeddings: sentence-transformers/all-MiniLM-L6-v2 (384-dim)
- Vector DB: FAISS (FlatIP index, normalized vectors)
- UI & API: Gradio Blocks
## Notes
- In-memory index only; resets when Space sleeps.
- For persistence, extend with save/load to ./data/.
- Demo-focused β€” fast, light, minimal surface.
## Author/Developer: Naga Adithya Kaushik (GenAIDevTOProd)
## Utilized AI CoPilot for development purpose : Yes (minimal) - Debug, test cases, experimentation only
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference