Spaces:
Running
Running
metadata
title: slotmatch
emoji: 🧩
colorFrom: purple
colorTo: indigo
sdk: static
pinned: false
SlotMatch
SlotMatch is a lightweight Python package for extracting structured key-value pairs from unstructured or noisy LLM outputs. It supports regex-based parsing, fuzzy key recovery, schema validation, and confidence scoring. Perfect for production RAG, chatbot, and NLU pipelines.
Installation
pip install slotmatch
## Features
- Regex-based value extraction
- Fuzzy key mapping (e.g., intnt → intent)
- Schema validation for expected keys and types
- Type coercion (str, int, float, bool)
- Confidence scoring (regex = high, fuzzy = partial, fallback = 0)
- Lightweight, no external dependencies
## Usage
from slotmatch import SlotExtractor
schema = {
"name": str,
"intent": str,
"destination": str
}
llm_output = '''
Hi, I'm Alice.
{
"intnt": "book_flight",
"dest": "NYC",
"name": "Alice"
}
'''
extractor = SlotExtractor(schema)
print(extractor.extract(llm_output))
## Output
{
'name': {'value': 'Alice', 'confidence': 1.0},
'intent': {'value': 'book_flight', 'confidence': ~0.64},
'destination': {'value': None, 'confidence': 0.0}
}
## Example Use Cases
- Post-processing LLM outputs (chatbots, assistants, tools)
- Extracting form fields or user intents
- Structuring data for downstream APIs or storage
- Integrating LLMs with business logic (field validation, routing)
## License
This project is licensed under the MIT License.