Spaces:
Running
on
Zero
Running
on
Zero
# --- START OF FILE app.py --- | |
import sys | |
import os | |
import re | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import login | |
from dotenv import load_dotenv | |
# --- FIX: Add project root to Python's path --- | |
project_root = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.insert(0, project_root) | |
# --- Updated Spaces import for Zero-GPU compatibility --- | |
try: | |
import spaces | |
print("'spaces' module imported successfully.") | |
except ImportError: | |
print("Warning: 'spaces' module not found. Using dummy decorator for local execution.") | |
class DummySpaces: | |
def GPU(self, *args, **kwargs): | |
def decorator(func): | |
print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.") | |
return func | |
return decorator | |
spaces = DummySpaces() | |
# --- Step 1: Hugging Face Authentication --- | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if not HF_TOKEN: | |
raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.") | |
print("--- Logging in to Hugging Face Hub ---") | |
login(token=HF_TOKEN) | |
# --- Step 2: Initialize Model and Tokenizer --- | |
MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN" | |
print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32 | |
print(f"--- Using device: {device}, dtype: {dtype} ---") | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=dtype, trust_remote_code=True).to(device) | |
model.eval() | |
print("--- Model and Tokenizer Loaded Successfully ---") | |
except Exception as e: | |
raise RuntimeError(f"FATAL: Could not load components. Error: {e}") | |
# --- Helper Functions --- | |
def chunk_text(text: str, max_size: int) -> list[str]: | |
if not text: return [] | |
chunks, start_index = [], 0 | |
while start_index < len(text): | |
end_index = start_index + max_size | |
if end_index >= len(text): | |
chunks.append(text[start_index:]); break | |
split_pos = text.rfind('.', start_index, end_index) | |
if split_pos != -1: | |
chunk, start_index = text[start_index : split_pos + 1], split_pos + 1 | |
else: | |
chunk, start_index = text[start_index:end_index], end_index | |
chunks.append(chunk.strip()) | |
return [c for c in chunks if c] | |
def preprocess_text(text: str) -> str: | |
"""Intelligently cleans text by handling newlines.""" | |
if not text: return "" | |
text = re.sub(r'\n{2,}', ' ', text) | |
text = text.replace('\n', ' ') | |
text = re.sub(r'\s{2,}', ' ', text) | |
return text.strip() | |
# --- Step 3: Core Translation Function (DEFINITIVE METHOD: NO CONTEXT) --- | |
def translate_with_chunks(input_text: str, chunk_size: int, progress=gr.Progress()) -> str: | |
""" | |
Processes text by translating each chunk independently to ensure correctness | |
and prevent any possibility of overlapping or translation errors. | |
""" | |
progress(0, desc="Starting...") | |
processed_text = preprocess_text(input_text) | |
if not processed_text: return "Input text is empty. Please enter some text to translate." | |
text_chunks = chunk_text(processed_text, chunk_size) if len(processed_text) > chunk_size else [processed_text] | |
num_chunks = len(text_chunks) | |
print(f"Processing {num_chunks} independent chunk(s).") | |
all_results = [] | |
for i, chunk in enumerate(text_chunks): | |
progress(0.1 + (i / num_chunks) * 0.8, desc=f"Translating chunk {i+1}/{num_chunks}") | |
# Create a new, single-turn prompt for every chunk. | |
# This is the only way to guarantee the model does not get confused. | |
messages = [{"role": "user", "content": chunk}] | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device) | |
generated_ids_tensor = model.generate( | |
**model_inputs, | |
max_new_tokens=2048, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.95, | |
top_k=50 | |
) | |
input_token_len = model_inputs.input_ids.shape[1] | |
output_ids = generated_ids_tensor[0][input_token_len:].tolist() | |
final_translation_for_chunk = tokenizer.decode(output_ids, skip_special_tokens=True).strip() | |
all_results.append(final_translation_for_chunk) | |
print(f"Chunk {i+1} processed successfully.") | |
progress(0.95, desc="Reassembling Results...") | |
full_output = " ".join(all_results) | |
progress(1.0, desc="Done!") | |
return full_output | |
# --- Step 4: Create and Launch the Gradio App (Context Slider Removed) --- | |
print("\n--- Initializing Gradio Interface ---") | |
app = gr.Interface( | |
fn=translate_with_chunks, | |
inputs=[ | |
gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."), | |
gr.Slider( | |
minimum=256, | |
maximum=2048, | |
value=768, | |
step=64, | |
label="Character Chunk Size", | |
info="Text will be split into chunks of this size for translation." | |
) | |
], | |
outputs=gr.Textbox(lines=15, label="Model Output", interactive=False), | |
title="ERNIE 4.5 Text Translator", | |
description="Processes long text by splitting it into independent chunks to ensure correct and reliable translation.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
app.queue().launch() |