Gregniuki's picture
Rename app8.py to app.py
88f4068 verified
# --- START OF FILE app.py ---
import sys
import os
import re
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from dotenv import load_dotenv
# --- FIX: Add project root to Python's path ---
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, project_root)
# --- Updated Spaces import for Zero-GPU compatibility ---
try:
import spaces
print("'spaces' module imported successfully.")
except ImportError:
print("Warning: 'spaces' module not found. Using dummy decorator for local execution.")
class DummySpaces:
def GPU(self, *args, **kwargs):
def decorator(func):
print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.")
return func
return decorator
spaces = DummySpaces()
# --- Step 1: Hugging Face Authentication ---
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.")
print("--- Logging in to Hugging Face Hub ---")
login(token=HF_TOKEN)
# --- Step 2: Initialize Model and Tokenizer ---
MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN"
print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
print(f"--- Using device: {device}, dtype: {dtype} ---")
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=dtype, trust_remote_code=True).to(device)
model.eval()
print("--- Model and Tokenizer Loaded Successfully ---")
except Exception as e:
raise RuntimeError(f"FATAL: Could not load components. Error: {e}")
# --- Helper Functions ---
def chunk_text(text: str, max_size: int) -> list[str]:
if not text: return []
chunks, start_index = [], 0
while start_index < len(text):
end_index = start_index + max_size
if end_index >= len(text):
chunks.append(text[start_index:]); break
split_pos = text.rfind('.', start_index, end_index)
if split_pos != -1:
chunk, start_index = text[start_index : split_pos + 1], split_pos + 1
else:
chunk, start_index = text[start_index:end_index], end_index
chunks.append(chunk.strip())
return [c for c in chunks if c]
def preprocess_text(text: str) -> str:
"""Intelligently cleans text by handling newlines."""
if not text: return ""
text = re.sub(r'\n{2,}', ' ', text)
text = text.replace('\n', ' ')
text = re.sub(r'\s{2,}', ' ', text)
return text.strip()
# --- Step 3: Core Translation Function (DEFINITIVE METHOD: NO CONTEXT) ---
@spaces.GPU
@torch.no_grad()
def translate_with_chunks(input_text: str, chunk_size: int, progress=gr.Progress()) -> str:
"""
Processes text by translating each chunk independently to ensure correctness
and prevent any possibility of overlapping or translation errors.
"""
progress(0, desc="Starting...")
processed_text = preprocess_text(input_text)
if not processed_text: return "Input text is empty. Please enter some text to translate."
text_chunks = chunk_text(processed_text, chunk_size) if len(processed_text) > chunk_size else [processed_text]
num_chunks = len(text_chunks)
print(f"Processing {num_chunks} independent chunk(s).")
all_results = []
for i, chunk in enumerate(text_chunks):
progress(0.1 + (i / num_chunks) * 0.8, desc=f"Translating chunk {i+1}/{num_chunks}")
# Create a new, single-turn prompt for every chunk.
# This is the only way to guarantee the model does not get confused.
messages = [{"role": "user", "content": chunk}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device)
generated_ids_tensor = model.generate(
**model_inputs,
max_new_tokens=2048,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=50
)
input_token_len = model_inputs.input_ids.shape[1]
output_ids = generated_ids_tensor[0][input_token_len:].tolist()
final_translation_for_chunk = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
all_results.append(final_translation_for_chunk)
print(f"Chunk {i+1} processed successfully.")
progress(0.95, desc="Reassembling Results...")
full_output = " ".join(all_results)
progress(1.0, desc="Done!")
return full_output
# --- Step 4: Create and Launch the Gradio App (Context Slider Removed) ---
print("\n--- Initializing Gradio Interface ---")
app = gr.Interface(
fn=translate_with_chunks,
inputs=[
gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."),
gr.Slider(
minimum=256,
maximum=2048,
value=768,
step=64,
label="Character Chunk Size",
info="Text will be split into chunks of this size for translation."
)
],
outputs=gr.Textbox(lines=15, label="Model Output", interactive=False),
title="ERNIE 4.5 Text Translator",
description="Processes long text by splitting it into independent chunks to ensure correct and reliable translation.",
allow_flagging="never"
)
if __name__ == "__main__":
app.queue().launch()