llasatts-tej / app.py
Hematej's picture
Update app.py
a4b2dd4 verified
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import tempfile
# βœ… Automatically detects whether to use GPU or CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
llasa_3b ='srinivasbilla/llasa-3b'
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(
llasa_3b,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.bfloat16 # βœ… Uses float16 for GPU, float32 for CPU
)
model_path = "srinivasbilla/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().to(device) # βœ… Moves model to correct device dynamically
# βœ… Whisper ASR pipeline with automatic CPU/GPU selection
whisper_turbo_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.bfloat16,
device=device # βœ… Automatically selects CPU/GPU
)
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, progress=gr.Progress()):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
progress(0, 'Loading and trimming audio...')
waveform, sample_rate = torchaudio.load(sample_audio_path)
if len(waveform[0])/sample_rate > 15:
gr.Warning("Trimming audio to first 15secs.")
waveform = waveform[:, :sample_rate*15]
if waveform.size(0) > 1:
# Convert stereo to mono by averaging the channels
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
else:
# If already mono, just use the original waveform
waveform_mono = waveform
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
progress(0.5, 'Transcribed! Generating speech...')
if len(target_text) == 0:
return None
elif len(target_text) > 300:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:300]
input_text = prompt_text + ' ' + target_text
with torch.no_grad():
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
vq_code_prompt = vq_code_prompt[0,0,:]
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
).to(device)
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
if speech_end_id is None:
raise ValueError("Error: `<|SPEECH_GENERATION_END|>` token not found!")
outputs = model.generate(
input_ids,
max_length=2048,
eos_token_id=speech_end_id,
do_sample=True,
top_p=1,
temperature=0.8
)
generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix):-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
speech_tokens = extract_speech_ids(speech_tokens)
if not speech_tokens:
raise ValueError("Error: No valid speech tokens extracted!")
speech_tokens = torch.tensor(speech_tokens).unsqueeze(0).unsqueeze(0).to(device)
gen_wav = Codec_model.decode_code(speech_tensor)
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
progress(1, 'Synthesized!')
return (16000, gen_wav[0, 0, :].cpu().numpy())
# βœ… Gradio UI setup
with gr.Blocks() as app_tts:
gr.Markdown("# Zero Shot Voice Clone TTS")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
generate_btn = gr.Button("Synthesize", variant="primary")
audio_output = gr.Audio(label="Synthesized Audio")
generate_btn.click(
infer,
inputs=[ref_audio_input, gen_text_input],
outputs=[audio_output],
)
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
""")
with gr.Blocks() as app:
gr.Markdown("""
# llasa 3b TTS
This is a local web UI for llasa 3b SOTA Zero Shot Voice Cloning and TTS model.
The checkpoints support English and Chinese.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
""")
gr.TabbedInterface([app_tts], ["TTS"])
app.launch(ssr_mode=False)