File size: 6,314 Bytes
631a83a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import logging
import os
import random
import time
import warnings
from dataclasses import dataclass, field
from shutil import copy, rmtree

import torch
import tyro
from huggingface_hub import snapshot_download
from packaging import version

# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
logging.getLogger("transformers").setLevel(logging.ERROR)
logging.getLogger("diffusers").setLevel(logging.ERROR)

# TorchVision monkey patch for >0.16
if version.parse(torch.__version__) >= version.parse("0.16"):
    import sys
    import types

    import torchvision.transforms.functional as TF

    functional_tensor = types.ModuleType(
        "torchvision.transforms.functional_tensor"
    )
    functional_tensor.rgb_to_grayscale = TF.rgb_to_grayscale
    sys.modules["torchvision.transforms.functional_tensor"] = functional_tensor

from gsplat.distributed import cli
from txt2panoimg import Text2360PanoramaImagePipeline
from embodied_gen.trainer.gsplat_trainer import (
    DefaultStrategy,
    GsplatTrainConfig,
)
from embodied_gen.trainer.gsplat_trainer import entrypoint as gsplat_entrypoint
from embodied_gen.trainer.pono2mesh_trainer import Pano2MeshSRPipeline
from embodied_gen.utils.config import Pano2MeshSRConfig
from embodied_gen.utils.gaussian import restore_scene_scale_and_position
from embodied_gen.utils.gpt_clients import GPT_CLIENT
from embodied_gen.utils.log import logger
from embodied_gen.utils.process_media import is_image_file, parse_text_prompts
from embodied_gen.validators.quality_checkers import (
    PanoHeightEstimator,
    PanoImageOccChecker,
)

__all__ = [
    "generate_pano_image",
    "entrypoint",
]


@dataclass
class Scene3DGenConfig:
    prompts: list[str]  # Text desc of indoor room or style reference image.
    output_dir: str
    seed: int | None = None
    real_height: float | None = None  # The real height of the room in meters.
    pano_image_only: bool = False
    disable_pano_check: bool = False
    keep_middle_result: bool = False
    n_retry: int = 7
    gs3d: GsplatTrainConfig = field(
        default_factory=lambda: GsplatTrainConfig(
            strategy=DefaultStrategy(verbose=True),
            max_steps=4000,
            init_opa=0.9,
            opacity_reg=2e-3,
            sh_degree=0,
            means_lr=1e-4,
            scales_lr=1e-3,
        )
    )


def generate_pano_image(
    prompt: str,
    output_path: str,
    pipeline,
    seed: int,
    n_retry: int,
    checker=None,
    num_inference_steps: int = 40,
) -> None:
    for i in range(n_retry):
        logger.info(
            f"GEN Panorama: Retry {i+1}/{n_retry} for prompt: {prompt}, seed: {seed}"
        )
        if is_image_file(prompt):
            raise NotImplementedError("Image mode not implemented yet.")
        else:
            txt_prompt = f"{prompt}, spacious, empty, wide open, open floor, minimal furniture"
            inputs = {
                "prompt": txt_prompt,
                "num_inference_steps": num_inference_steps,
                "upscale": False,
                "seed": seed,
            }
            pano_image = pipeline(inputs)

        pano_image.save(output_path)
        if checker is None:
            break

        flag, response = checker(pano_image)
        logger.warning(f"{response}, image saved in {output_path}")
        if flag is True or flag is None:
            break

        seed = random.randint(0, 100000)

    return


def entrypoint(*args, **kwargs):
    cfg = tyro.cli(Scene3DGenConfig)

    # Init global models.
    model_path = snapshot_download("archerfmy0831/sd-t2i-360panoimage")
    IMG2PANO_PIPE = Text2360PanoramaImagePipeline(
        model_path, torch_dtype=torch.float16, device="cuda"
    )
    PANOMESH_CFG = Pano2MeshSRConfig()
    PANO2MESH_PIPE = Pano2MeshSRPipeline(PANOMESH_CFG)
    PANO_CHECKER = PanoImageOccChecker(GPT_CLIENT, box_hw=[95, 1000])
    PANOHEIGHT_ESTOR = PanoHeightEstimator(GPT_CLIENT)

    prompts = parse_text_prompts(cfg.prompts)
    for idx, prompt in enumerate(prompts):
        start_time = time.time()
        output_dir = os.path.join(cfg.output_dir, f"scene_{idx:04d}")
        os.makedirs(output_dir, exist_ok=True)
        pano_path = os.path.join(output_dir, "pano_image.png")
        with open(f"{output_dir}/prompt.txt", "w") as f:
            f.write(prompt)

        generate_pano_image(
            prompt,
            pano_path,
            IMG2PANO_PIPE,
            cfg.seed if cfg.seed is not None else random.randint(0, 100000),
            cfg.n_retry,
            checker=None if cfg.disable_pano_check else PANO_CHECKER,
        )

        if cfg.pano_image_only:
            continue

        logger.info("GEN and REPAIR Mesh from Panorama...")
        PANO2MESH_PIPE(pano_path, output_dir)

        logger.info("TRAIN 3DGS from Mesh Init and Cube Image...")
        cfg.gs3d.data_dir = output_dir
        cfg.gs3d.result_dir = f"{output_dir}/gaussian"
        cfg.gs3d.adjust_steps(cfg.gs3d.steps_scaler)
        torch.set_default_device("cpu")  # recover default setting.
        cli(gsplat_entrypoint, cfg.gs3d, verbose=True)

        # Clean up the middle results.
        gs_path = (
            f"{cfg.gs3d.result_dir}/ply/point_cloud_{cfg.gs3d.max_steps-1}.ply"
        )
        copy(gs_path, f"{output_dir}/gs_model.ply")
        video_path = f"{cfg.gs3d.result_dir}/renders/video_step{cfg.gs3d.max_steps-1}.mp4"
        copy(video_path, f"{output_dir}/video.mp4")
        gs_cfg_path = f"{cfg.gs3d.result_dir}/cfg.yml"
        copy(gs_cfg_path, f"{output_dir}/gsplat_cfg.yml")
        if not cfg.keep_middle_result:
            rmtree(cfg.gs3d.result_dir, ignore_errors=True)
            os.remove(f"{output_dir}/{PANOMESH_CFG.gs_data_file}")

        real_height = (
            PANOHEIGHT_ESTOR(pano_path)
            if cfg.real_height is None
            else cfg.real_height
        )
        gs_path = os.path.join(output_dir, "gs_model.ply")
        mesh_path = os.path.join(output_dir, "mesh_model.ply")
        restore_scene_scale_and_position(real_height, mesh_path, gs_path)

        elapsed_time = (time.time() - start_time) / 60
        logger.info(
            f"FINISHED 3D scene generation in {output_dir} in {elapsed_time:.2f} mins."
        )


if __name__ == "__main__":
    entrypoint()