File size: 9,019 Bytes
631a83a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

import argparse
import os
import random
from collections import defaultdict

import numpy as np
import torch
from PIL import Image
from embodied_gen.models.image_comm_model import build_hf_image_pipeline
from embodied_gen.models.segment_model import RembgRemover
from embodied_gen.models.text_model import PROMPT_APPEND
from embodied_gen.scripts.imageto3d import entrypoint as imageto3d_api
from embodied_gen.utils.gpt_clients import GPT_CLIENT
from embodied_gen.utils.log import logger
from embodied_gen.utils.process_media import (
    check_object_edge_truncated,
    render_asset3d,
)
from embodied_gen.validators.quality_checkers import (
    ImageSegChecker,
    SemanticConsistChecker,
    TextGenAlignChecker,
)

# Avoid huggingface/tokenizers: The current process just got forked.
os.environ["TOKENIZERS_PARALLELISM"] = "false"
random.seed(0)

logger.info("Loading Models...")
SEMANTIC_CHECKER = SemanticConsistChecker(GPT_CLIENT)
SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
TXTGEN_CHECKER = TextGenAlignChecker(GPT_CLIENT)
PIPE_IMG = build_hf_image_pipeline(os.environ.get("TEXT_MODEL", "sd35"))
BG_REMOVER = RembgRemover()


__all__ = [
    "text_to_image",
    "text_to_3d",
]


def text_to_image(
    prompt: str,
    save_path: str,
    n_retry: int,
    img_denoise_step: int,
    text_guidance_scale: float,
    n_img_sample: int,
    image_hw: tuple[int, int] = (1024, 1024),
    seed: int = None,
) -> bool:
    select_image = None
    success_flag = False
    assert save_path.endswith(".png"), "Image save path must end with `.png`."
    for try_idx in range(n_retry):
        if select_image is not None:
            select_image[0].save(save_path.replace(".png", "_raw.png"))
            select_image[1].save(save_path)
            break

        f_prompt = PROMPT_APPEND.format(object=prompt)
        logger.info(
            f"Image GEN for {os.path.basename(save_path)}\n"
            f"Try: {try_idx + 1}/{n_retry}, Seed: {seed}, Prompt: {f_prompt}"
        )
        torch.cuda.empty_cache()
        images = PIPE_IMG.run(
            f_prompt,
            num_inference_steps=img_denoise_step,
            guidance_scale=text_guidance_scale,
            num_images_per_prompt=n_img_sample,
            height=image_hw[0],
            width=image_hw[1],
            generator=(
                torch.Generator().manual_seed(seed)
                if seed is not None
                else None
            ),
        )

        for idx in range(len(images)):
            raw_image: Image.Image = images[idx]
            image = BG_REMOVER(raw_image)
            image.save(save_path)
            semantic_flag, semantic_result = SEMANTIC_CHECKER(
                prompt, [image.convert("RGB")]
            )
            seg_flag, seg_result = SEG_CHECKER(
                [raw_image, image.convert("RGB")]
            )
            image_mask = np.array(image)[..., -1]
            edge_flag = check_object_edge_truncated(image_mask)
            logger.warning(
                f"SEMANTIC: {semantic_result}. SEG: {seg_result}. EDGE: {edge_flag}"
            )
            if (
                (edge_flag and semantic_flag and seg_flag)
                or (edge_flag and semantic_flag is None)
                or (edge_flag and seg_flag is None)
            ):
                select_image = [raw_image, image]
                success_flag = True
                break

        seed = random.randint(0, 100000) if seed is not None else None

    return success_flag


def text_to_3d(**kwargs) -> dict:
    args = parse_args()
    for k, v in kwargs.items():
        if hasattr(args, k) and v is not None:
            setattr(args, k, v)

    if args.asset_names is None or len(args.asset_names) == 0:
        args.asset_names = [f"sample3d_{i}" for i in range(len(args.prompts))]
    img_save_dir = os.path.join(args.output_root, "images")
    asset_save_dir = os.path.join(args.output_root, "asset3d")
    os.makedirs(img_save_dir, exist_ok=True)
    os.makedirs(asset_save_dir, exist_ok=True)
    results = defaultdict(dict)
    for prompt, node in zip(args.prompts, args.asset_names):
        success_flag = False
        n_pipe_retry = args.n_pipe_retry
        seed_img = args.seed_img
        seed_3d = args.seed_3d
        while success_flag is False and n_pipe_retry > 0:
            logger.info(
                f"GEN pipeline for node {node}\n"
                f"Try round: {args.n_pipe_retry-n_pipe_retry+1}/{args.n_pipe_retry}, Prompt: {prompt}"
            )
            # Text-to-image GEN
            save_node = node.replace(" ", "_")
            gen_image_path = f"{img_save_dir}/{save_node}.png"
            textgen_flag = text_to_image(
                prompt,
                gen_image_path,
                args.n_image_retry,
                args.img_denoise_step,
                args.text_guidance_scale,
                args.n_img_sample,
                seed=seed_img,
            )

            # Asset 3D GEN
            node_save_dir = f"{asset_save_dir}/{save_node}"
            asset_type = node if "sample3d_" not in node else None
            imageto3d_api(
                image_path=[gen_image_path],
                output_root=node_save_dir,
                asset_type=[asset_type],
                seed=random.randint(0, 100000) if seed_3d is None else seed_3d,
                n_retry=args.n_asset_retry,
                keep_intermediate=args.keep_intermediate,
            )
            mesh_path = f"{node_save_dir}/result/mesh/{save_node}.obj"
            image_path = render_asset3d(
                mesh_path,
                output_root=f"{node_save_dir}/result",
                num_images=6,
                elevation=(30, -30),
                output_subdir="renders",
                no_index_file=True,
            )

            check_text = asset_type if asset_type is not None else prompt
            qa_flag, qa_result = TXTGEN_CHECKER(check_text, image_path)
            logger.warning(
                f"Node {node}, {TXTGEN_CHECKER.__class__.__name__}: {qa_result}"
            )
            results["assets"][node] = f"{node_save_dir}/result"
            results["quality"][node] = qa_result

            if qa_flag is None or qa_flag is True:
                success_flag = True
                break

            n_pipe_retry -= 1
            seed_img = (
                random.randint(0, 100000) if seed_img is not None else None
            )
            seed_3d = (
                random.randint(0, 100000) if seed_3d is not None else None
            )

        torch.cuda.empty_cache()

    return results


def parse_args():
    parser = argparse.ArgumentParser(description="3D Layout Generation Config")
    parser.add_argument("--prompts", nargs="+", help="text descriptions")
    parser.add_argument(
        "--output_root",
        type=str,
        help="Directory to save outputs",
    )
    parser.add_argument(
        "--asset_names",
        type=str,
        nargs="+",
        default=None,
        help="Asset names to generate",
    )
    parser.add_argument(
        "--n_img_sample",
        type=int,
        default=3,
        help="Number of image samples to generate",
    )
    parser.add_argument(
        "--text_guidance_scale",
        type=float,
        default=7,
        help="Text-to-image guidance scale",
    )
    parser.add_argument(
        "--img_denoise_step",
        type=int,
        default=25,
        help="Denoising steps for image generation",
    )
    parser.add_argument(
        "--n_image_retry",
        type=int,
        default=2,
        help="Max retry count for image generation",
    )
    parser.add_argument(
        "--n_asset_retry",
        type=int,
        default=2,
        help="Max retry count for 3D generation",
    )
    parser.add_argument(
        "--n_pipe_retry",
        type=int,
        default=1,
        help="Max retry count for 3D asset generation",
    )
    parser.add_argument(
        "--seed_img",
        type=int,
        default=None,
        help="Random seed for image generation",
    )
    parser.add_argument(
        "--seed_3d",
        type=int,
        default=0,
        help="Random seed for 3D generation",
    )
    parser.add_argument("--keep_intermediate", action="store_true")

    args, unknown = parser.parse_known_args()

    return args


if __name__ == "__main__":
    text_to_3d()