File size: 19,487 Bytes
631a83a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.


from embodied_gen.utils.monkey_patches import monkey_patch_pano2room

monkey_patch_pano2room()

import os

import cv2
import numpy as np
import torch
import trimesh
from equilib import cube2equi, equi2pers
from kornia.morphology import dilation
from PIL import Image
from embodied_gen.models.sr_model import ImageRealESRGAN
from embodied_gen.utils.config import Pano2MeshSRConfig
from embodied_gen.utils.gaussian import compute_pinhole_intrinsics
from embodied_gen.utils.log import logger
from thirdparty.pano2room.modules.geo_predictors import PanoJointPredictor
from thirdparty.pano2room.modules.geo_predictors.PanoFusionDistancePredictor import (
    PanoFusionDistancePredictor,
)
from thirdparty.pano2room.modules.inpainters import PanoPersFusionInpainter
from thirdparty.pano2room.modules.mesh_fusion.render import (
    features_to_world_space_mesh,
    render_mesh,
)
from thirdparty.pano2room.modules.mesh_fusion.sup_info import SupInfoPool
from thirdparty.pano2room.utils.camera_utils import gen_pano_rays
from thirdparty.pano2room.utils.functions import (
    depth_to_distance,
    get_cubemap_views_world_to_cam,
    resize_image_with_aspect_ratio,
    rot_z_world_to_cam,
    tensor_to_pil,
)


class Pano2MeshSRPipeline:
    """Converting panoramic RGB image into 3D mesh representations, followed by inpainting and mesh refinement.

    This class integrates several key components including:
    - Depth estimation from RGB panorama
    - Inpainting of missing regions under offsets
    - RGB-D to mesh conversion
    - Multi-view mesh repair
    - 3D Gaussian Splatting (3DGS) dataset generation

    Args:
        config (Pano2MeshSRConfig): Configuration object containing model and pipeline parameters.

    Example:
        ```python
        pipeline = Pano2MeshSRPipeline(config)
        pipeline(pano_image='example.png', output_dir='./output')
        ```
    """

    def __init__(self, config: Pano2MeshSRConfig) -> None:
        self.cfg = config
        self.device = config.device

        # Init models.
        self.inpainter = PanoPersFusionInpainter(save_path=None)
        self.geo_predictor = PanoJointPredictor(save_path=None)
        self.pano_fusion_distance_predictor = PanoFusionDistancePredictor()
        self.super_model = ImageRealESRGAN(outscale=self.cfg.upscale_factor)

        # Init poses.
        cubemap_w2cs = get_cubemap_views_world_to_cam()
        self.cubemap_w2cs = [p.to(self.device) for p in cubemap_w2cs]
        self.camera_poses = self.load_camera_poses(self.cfg.trajectory_dir)

        kernel = cv2.getStructuringElement(
            cv2.MORPH_ELLIPSE, self.cfg.kernel_size
        )
        self.kernel = torch.from_numpy(kernel).float().to(self.device)

    def init_mesh_params(self) -> None:
        torch.set_default_device(self.device)
        self.inpaint_mask = torch.ones(
            (self.cfg.cubemap_h, self.cfg.cubemap_w), dtype=torch.bool
        )
        self.vertices = torch.empty((3, 0), requires_grad=False)
        self.colors = torch.empty((3, 0), requires_grad=False)
        self.faces = torch.empty((3, 0), dtype=torch.long, requires_grad=False)

    @staticmethod
    def read_camera_pose_file(filepath: str) -> np.ndarray:
        with open(filepath, "r") as f:
            values = [float(num) for line in f for num in line.split()]

        return np.array(values).reshape(4, 4)

    def load_camera_poses(
        self, trajectory_dir: str
    ) -> tuple[np.ndarray, list[torch.Tensor]]:
        pose_filenames = sorted(
            [
                fname
                for fname in os.listdir(trajectory_dir)
                if fname.startswith("camera_pose")
            ]
        )

        pano_pose_world = None
        relative_poses = []
        for idx, filename in enumerate(pose_filenames):
            pose_path = os.path.join(trajectory_dir, filename)
            pose_matrix = self.read_camera_pose_file(pose_path)

            if pano_pose_world is None:
                pano_pose_world = pose_matrix.copy()
                pano_pose_world[0, 3] += self.cfg.pano_center_offset[0]
                pano_pose_world[2, 3] += self.cfg.pano_center_offset[1]

            # Use different reference for the first 6 cubemap views
            reference_pose = pose_matrix if idx < 6 else pano_pose_world
            relative_matrix = pose_matrix @ np.linalg.inv(reference_pose)
            relative_matrix[0:2, :] *= -1  # flip_xy
            relative_matrix = (
                relative_matrix @ rot_z_world_to_cam(180).cpu().numpy()
            )
            relative_matrix[:3, 3] *= self.cfg.pose_scale
            relative_matrix = torch.tensor(
                relative_matrix, dtype=torch.float32
            )
            relative_poses.append(relative_matrix)

        return relative_poses

    def load_inpaint_poses(
        self, poses: torch.Tensor
    ) -> dict[int, torch.Tensor]:
        inpaint_poses = dict()
        sampled_views = poses[:: self.cfg.inpaint_frame_stride]
        init_pose = torch.eye(4)
        for idx, w2c_tensor in enumerate(sampled_views):
            w2c = w2c_tensor.cpu().numpy().astype(np.float32)
            c2w = np.linalg.inv(w2c)
            pose_tensor = init_pose.clone()
            pose_tensor[:3, 3] = torch.from_numpy(c2w[:3, 3])
            pose_tensor[:3, 3] *= -1
            inpaint_poses[idx] = pose_tensor.to(self.device)

        return inpaint_poses

    def project(self, world_to_cam: torch.Tensor):
        (
            project_image,
            project_depth,
            inpaint_mask,
            _,
            z_buf,
            mesh,
        ) = render_mesh(
            vertices=self.vertices,
            faces=self.faces,
            vertex_features=self.colors,
            H=self.cfg.cubemap_h,
            W=self.cfg.cubemap_w,
            fov_in_degrees=self.cfg.fov,
            RT=world_to_cam,
            blur_radius=self.cfg.blur_radius,
            faces_per_pixel=self.cfg.faces_per_pixel,
        )
        project_image = project_image * ~inpaint_mask

        return project_image[:3, ...], inpaint_mask, project_depth

    def render_pano(self, pose: torch.Tensor):
        cubemap_list = []
        for cubemap_pose in self.cubemap_w2cs:
            project_pose = cubemap_pose @ pose
            rgb, inpaint_mask, depth = self.project(project_pose)
            distance_map = depth_to_distance(depth[None, ...])
            mask = inpaint_mask[None, ...]
            cubemap_list.append(torch.cat([rgb, distance_map, mask], dim=0))

        # Set default tensor type for CPU operation in cube2equi
        with torch.device("cpu"):
            pano_rgbd = cube2equi(
                cubemap_list, "list", self.cfg.pano_h, self.cfg.pano_w
            )

        pano_rgb = pano_rgbd[:3, :, :]
        pano_depth = pano_rgbd[3:4, :, :].squeeze(0)
        pano_mask = pano_rgbd[4:, :, :].squeeze(0)

        return pano_rgb, pano_depth, pano_mask

    def rgbd_to_mesh(
        self,
        rgb: torch.Tensor,
        depth: torch.Tensor,
        inpaint_mask: torch.Tensor,
        world_to_cam: torch.Tensor = None,
        using_distance_map: bool = True,
    ) -> None:
        if world_to_cam is None:
            world_to_cam = torch.eye(4, dtype=torch.float32).to(self.device)

        if inpaint_mask.sum() == 0:
            return

        vertices, faces, colors = features_to_world_space_mesh(
            colors=rgb.squeeze(0),
            depth=depth,
            fov_in_degrees=self.cfg.fov,
            world_to_cam=world_to_cam,
            mask=inpaint_mask,
            faces=self.faces,
            vertices=self.vertices,
            using_distance_map=using_distance_map,
            edge_threshold=0.05,
        )

        faces += self.vertices.shape[1]
        self.vertices = torch.cat([self.vertices, vertices], dim=1)
        self.colors = torch.cat([self.colors, colors], dim=1)
        self.faces = torch.cat([self.faces, faces], dim=1)

    def get_edge_image_by_depth(
        self, depth: torch.Tensor, dilate_iter: int = 1
    ) -> np.ndarray:
        if isinstance(depth, torch.Tensor):
            depth = depth.cpu().detach().numpy()

        gray = (depth / depth.max() * 255).astype(np.uint8)
        edges = cv2.Canny(gray, 60, 150)
        if dilate_iter > 0:
            kernel = np.ones((3, 3), np.uint8)
            edges = cv2.dilate(edges, kernel, iterations=dilate_iter)

        return edges

    def mesh_repair_by_greedy_view_selection(
        self, pose_dict: dict[str, torch.Tensor], output_dir: str
    ) -> list:
        inpainted_panos_w_pose = []
        while len(pose_dict) > 0:
            logger.info(f"Repairing mesh left rounds {len(pose_dict)}")
            sampled_views = []
            for key, pose in pose_dict.items():
                pano_rgb, pano_distance, pano_mask = self.render_pano(pose)
                completeness = torch.sum(1 - pano_mask) / (pano_mask.numel())
                sampled_views.append((key, completeness.item(), pose))

            if len(sampled_views) == 0:
                break

            # Find inpainting with least view completeness.
            sampled_views = sorted(sampled_views, key=lambda x: x[1])
            key, _, pose = sampled_views[len(sampled_views) * 2 // 3]
            pose_dict.pop(key)

            pano_rgb, pano_distance, pano_mask = self.render_pano(pose)

            colors = pano_rgb.permute(1, 2, 0).clone()
            distances = pano_distance.unsqueeze(-1).clone()
            pano_inpaint_mask = pano_mask.clone()
            init_pose = pose.clone()
            normals = None
            if pano_inpaint_mask.min().item() < 0.5:
                colors, distances, normals = self.inpaint_panorama(
                    idx=key,
                    colors=colors,
                    distances=distances,
                    pano_mask=pano_inpaint_mask,
                )

                init_pose[0, 3], init_pose[1, 3], init_pose[2, 3] = (
                    -pose[0, 3],
                    pose[2, 3],
                    0,
                )
                rays = gen_pano_rays(
                    init_pose, self.cfg.pano_h, self.cfg.pano_w
                )
                conflict_mask = self.sup_pool.geo_check(
                    rays, distances.unsqueeze(-1)
                )  # 0 is conflict, 1 not conflict
                pano_inpaint_mask *= conflict_mask

            self.rgbd_to_mesh(
                colors.permute(2, 0, 1),
                distances,
                pano_inpaint_mask,
                world_to_cam=pose,
            )

            self.sup_pool.register_sup_info(
                pose=init_pose,
                mask=pano_inpaint_mask.clone(),
                rgb=colors,
                distance=distances.unsqueeze(-1),
                normal=normals,
            )

            colors = colors.permute(2, 0, 1).unsqueeze(0)
            inpainted_panos_w_pose.append([colors, pose])

            if self.cfg.visualize:
                from embodied_gen.data.utils import DiffrastRender

                tensor_to_pil(pano_rgb.unsqueeze(0)).save(
                    f"{output_dir}/rendered_pano_{key}.jpg"
                )
                tensor_to_pil(colors).save(
                    f"{output_dir}/inpainted_pano_{key}.jpg"
                )
                norm_depth = DiffrastRender.normalize_map_by_mask(
                    distances, torch.ones_like(distances)
                )
                heatmap = (norm_depth.cpu().numpy() * 255).astype(np.uint8)
                heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
                Image.fromarray(heatmap).save(
                    f"{output_dir}/inpainted_depth_{key}.png"
                )

        return inpainted_panos_w_pose

    def inpaint_panorama(
        self,
        idx: int,
        colors: torch.Tensor,
        distances: torch.Tensor,
        pano_mask: torch.Tensor,
    ) -> tuple[torch.Tensor]:
        mask = (pano_mask[None, ..., None] > 0.5).float()
        mask = mask.permute(0, 3, 1, 2)
        mask = dilation(mask, kernel=self.kernel)
        mask = mask[0, 0, ..., None]  # hwc
        inpainted_img = self.inpainter.inpaint(idx, colors, mask)
        inpainted_img = colors * (1 - mask) + inpainted_img * mask
        inpainted_distances, inpainted_normals = self.geo_predictor(
            idx,
            inpainted_img,
            distances[..., None],
            mask=mask,
            reg_loss_weight=0.0,
            normal_loss_weight=5e-2,
            normal_tv_loss_weight=5e-2,
        )

        return inpainted_img, inpainted_distances.squeeze(), inpainted_normals

    def preprocess_pano(
        self, image: Image.Image | str
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if isinstance(image, str):
            image = Image.open(image)

        image = image.convert("RGB")

        if image.size[0] < image.size[1]:
            image = image.transpose(Image.TRANSPOSE)

        image = resize_image_with_aspect_ratio(image, self.cfg.pano_w)
        image_rgb = torch.tensor(np.array(image)).permute(2, 0, 1) / 255
        image_rgb = image_rgb.to(self.device)
        image_depth = self.pano_fusion_distance_predictor.predict(
            image_rgb.permute(1, 2, 0)
        )
        image_depth = (
            image_depth / image_depth.max() * self.cfg.depth_scale_factor
        )

        return image_rgb, image_depth

    def pano_to_perpective(
        self, pano_image: torch.Tensor, pitch: float, yaw: float, fov: float
    ) -> torch.Tensor:
        rots = dict(
            roll=0,
            pitch=pitch,
            yaw=yaw,
        )
        perspective = equi2pers(
            equi=pano_image.squeeze(0),
            rots=rots,
            height=self.cfg.cubemap_h,
            width=self.cfg.cubemap_w,
            fov_x=fov,
            mode="bilinear",
        ).unsqueeze(0)

        return perspective

    def pano_to_cubemap(self, pano_rgb: torch.Tensor):
        # Define six canonical cube directions in (pitch, yaw)
        directions = [
            (0, 0),
            (0, 1.5 * np.pi),
            (0, 1.0 * np.pi),
            (0, 0.5 * np.pi),
            (-0.5 * np.pi, 0),
            (0.5 * np.pi, 0),
        ]

        cubemaps_rgb = []
        for pitch, yaw in directions:
            rgb_view = self.pano_to_perpective(
                pano_rgb, pitch, yaw, fov=self.cfg.fov
            )
            cubemaps_rgb.append(rgb_view.cpu())

        return cubemaps_rgb

    def save_mesh(self, output_path: str) -> None:
        vertices_np = self.vertices.T.cpu().numpy()
        colors_np = self.colors.T.cpu().numpy()
        faces_np = self.faces.T.cpu().numpy()
        mesh = trimesh.Trimesh(
            vertices=vertices_np, faces=faces_np, vertex_colors=colors_np
        )

        mesh.export(output_path)

    def mesh_pose_to_gs_pose(self, mesh_pose: torch.Tensor) -> np.ndarray:
        pose = mesh_pose.clone()
        pose[0, :] *= -1
        pose[1, :] *= -1

        Rw2c = pose[:3, :3].cpu().numpy()
        Tw2c = pose[:3, 3:].cpu().numpy()
        yz_reverse = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])

        Rc2w = (yz_reverse @ Rw2c).T
        Tc2w = -(Rc2w @ yz_reverse @ Tw2c)
        c2w = np.concatenate((Rc2w, Tc2w), axis=1)
        c2w = np.concatenate((c2w, np.array([[0, 0, 0, 1]])), axis=0)

        return c2w

    def __call__(self, pano_image: Image.Image | str, output_dir: str):
        self.init_mesh_params()
        pano_rgb, pano_depth = self.preprocess_pano(pano_image)
        self.sup_pool = SupInfoPool()
        self.sup_pool.register_sup_info(
            pose=torch.eye(4).to(self.device),
            mask=torch.ones([self.cfg.pano_h, self.cfg.pano_w]),
            rgb=pano_rgb.permute(1, 2, 0),
            distance=pano_depth[..., None],
        )
        self.sup_pool.gen_occ_grid(res=256)

        logger.info("Init mesh from pano RGBD image...")
        depth_edge = self.get_edge_image_by_depth(pano_depth)
        inpaint_edge_mask = (
            ~torch.from_numpy(depth_edge).to(self.device).bool()
        )
        self.rgbd_to_mesh(pano_rgb, pano_depth, inpaint_edge_mask)

        repair_poses = self.load_inpaint_poses(self.camera_poses)
        inpainted_panos_w_poses = self.mesh_repair_by_greedy_view_selection(
            repair_poses, output_dir
        )
        torch.cuda.empty_cache()
        torch.set_default_device("cpu")

        if self.cfg.mesh_file is not None:
            mesh_path = os.path.join(output_dir, self.cfg.mesh_file)
            self.save_mesh(mesh_path)

        if self.cfg.gs_data_file is None:
            return

        logger.info(f"Dump data for 3DGS training...")
        points_rgb = (self.colors.clip(0, 1) * 255).to(torch.uint8)
        data = {
            "points": self.vertices.permute(1, 0).cpu().numpy(),  # (N, 3)
            "points_rgb": points_rgb.permute(1, 0).cpu().numpy(),  # (N, 3)
            "train": [],
            "eval": [],
        }
        image_h = self.cfg.cubemap_h * self.cfg.upscale_factor
        image_w = self.cfg.cubemap_w * self.cfg.upscale_factor
        Ks = compute_pinhole_intrinsics(image_w, image_h, self.cfg.fov)
        for idx, (pano_img, pano_pose) in enumerate(inpainted_panos_w_poses):
            cubemaps = self.pano_to_cubemap(pano_img)
            for i in range(len(cubemaps)):
                cubemap = tensor_to_pil(cubemaps[i])
                cubemap = self.super_model(cubemap)
                mesh_pose = self.cubemap_w2cs[i] @ pano_pose
                c2w = self.mesh_pose_to_gs_pose(mesh_pose)
                data["train"].append(
                    {
                        "camtoworld": c2w.astype(np.float32),
                        "K": Ks.astype(np.float32),
                        "image": np.array(cubemap),
                        "image_h": image_h,
                        "image_w": image_w,
                        "image_id": len(cubemaps) * idx + i,
                    }
                )

        # Camera poses for evaluation.
        for idx in range(len(self.camera_poses)):
            c2w = self.mesh_pose_to_gs_pose(self.camera_poses[idx])
            data["eval"].append(
                {
                    "camtoworld": c2w.astype(np.float32),
                    "K": Ks.astype(np.float32),
                    "image_h": image_h,
                    "image_w": image_w,
                    "image_id": idx,
                }
            )

        data_path = os.path.join(output_dir, self.cfg.gs_data_file)
        torch.save(data, data_path)

        return


if __name__ == "__main__":
    output_dir = "outputs/bg_v2/test3"
    input_pano = "apps/assets/example_scene/result_pano.png"
    config = Pano2MeshSRConfig()
    pipeline = Pano2MeshSRPipeline(config)
    pipeline(input_pano, output_dir)