Spaces:
Running
on
Zero
Running
on
Zero
# Project EmbodiedGen | |
# | |
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or | |
# implied. See the License for the specific language governing | |
# permissions and limitations under the License. | |
import os | |
import sys | |
import numpy as np | |
import spaces | |
import torch | |
from tqdm import tqdm | |
current_file_path = os.path.abspath(__file__) | |
current_dir = os.path.dirname(current_file_path) | |
sys.path.append(os.path.join(current_dir, "../..")) | |
from thirdparty.TRELLIS.trellis.renderers.mesh_renderer import MeshRenderer | |
from thirdparty.TRELLIS.trellis.representations import MeshExtractResult | |
from thirdparty.TRELLIS.trellis.utils.render_utils import ( | |
render_frames, | |
yaw_pitch_r_fov_to_extrinsics_intrinsics, | |
) | |
__all__ = [ | |
"render_video", | |
] | |
def render_mesh(sample, extrinsics, intrinsics, options={}, **kwargs): | |
renderer = MeshRenderer() | |
renderer.rendering_options.resolution = options.get("resolution", 512) | |
renderer.rendering_options.near = options.get("near", 1) | |
renderer.rendering_options.far = options.get("far", 100) | |
renderer.rendering_options.ssaa = options.get("ssaa", 4) | |
rets = {} | |
for extr, intr in tqdm(zip(extrinsics, intrinsics), desc="Rendering"): | |
res = renderer.render(sample, extr, intr) | |
if "normal" not in rets: | |
rets["normal"] = [] | |
normal = torch.lerp( | |
torch.zeros_like(res["normal"]), res["normal"], res["mask"] | |
) | |
normal = np.clip( | |
normal.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255 | |
).astype(np.uint8) | |
rets["normal"].append(normal) | |
return rets | |
def render_video( | |
sample, | |
resolution=512, | |
bg_color=(0, 0, 0), | |
num_frames=300, | |
r=2, | |
fov=40, | |
**kwargs, | |
): | |
yaws = torch.linspace(0, 2 * 3.1415, num_frames) | |
yaws = yaws.tolist() | |
pitch = [0.5] * num_frames | |
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics( | |
yaws, pitch, r, fov | |
) | |
render_fn = ( | |
render_mesh if isinstance(sample, MeshExtractResult) else render_frames | |
) | |
result = render_fn( | |
sample, | |
extrinsics, | |
intrinsics, | |
{"resolution": resolution, "bg_color": bg_color}, | |
**kwargs, | |
) | |
return result | |