File size: 7,074 Bytes
575f14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# Text-to-Image generation models from Hugging Face community.

import os
from abc import ABC, abstractmethod

import torch
from diffusers import (
    ChromaPipeline,
    Cosmos2TextToImagePipeline,
    DPMSolverMultistepScheduler,
    FluxPipeline,
    KolorsPipeline,
    StableDiffusion3Pipeline,
)
from diffusers.quantizers import PipelineQuantizationConfig
from huggingface_hub import snapshot_download
from PIL import Image
from transformers import AutoModelForCausalLM, SiglipProcessor

__all__ = [
    "build_hf_image_pipeline",
]


class BasePipelineLoader(ABC):
    def __init__(self, device="cuda"):
        self.device = device

    @abstractmethod
    def load(self):
        pass


class BasePipelineRunner(ABC):
    def __init__(self, pipe):
        self.pipe = pipe

    @abstractmethod
    def run(self, prompt: str, **kwargs) -> Image.Image:
        pass


# ===== SD3.5-medium =====
class SD35Loader(BasePipelineLoader):
    def load(self):
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-medium",
            torch_dtype=torch.float16,
        )
        pipe = pipe.to(self.device)
        pipe.enable_model_cpu_offload()
        pipe.enable_xformers_memory_efficient_attention()
        pipe.enable_attention_slicing()
        return pipe


class SD35Runner(BasePipelineRunner):
    def run(self, prompt: str, **kwargs) -> Image.Image:
        return self.pipe(prompt=prompt, **kwargs).images


# ===== Cosmos2 =====
class CosmosLoader(BasePipelineLoader):
    def __init__(
        self,
        model_id="nvidia/Cosmos-Predict2-2B-Text2Image",
        local_dir="weights/cosmos2",
        device="cuda",
    ):
        super().__init__(device)
        self.model_id = model_id
        self.local_dir = local_dir

    def _patch(self):
        def patch_model(cls):
            orig = cls.from_pretrained

            def new(*args, **kwargs):
                kwargs.setdefault("attn_implementation", "flash_attention_2")
                kwargs.setdefault("torch_dtype", torch.bfloat16)
                return orig(*args, **kwargs)

            cls.from_pretrained = new

        def patch_processor(cls):
            orig = cls.from_pretrained

            def new(*args, **kwargs):
                kwargs.setdefault("use_fast", True)
                return orig(*args, **kwargs)

            cls.from_pretrained = new

        patch_model(AutoModelForCausalLM)
        patch_processor(SiglipProcessor)

    def load(self):
        self._patch()
        snapshot_download(
            repo_id=self.model_id,
            local_dir=self.local_dir,
            local_dir_use_symlinks=False,
            resume_download=True,
        )

        config = PipelineQuantizationConfig(
            quant_backend="bitsandbytes_4bit",
            quant_kwargs={
                "load_in_4bit": True,
                "bnb_4bit_quant_type": "nf4",
                "bnb_4bit_compute_dtype": torch.bfloat16,
                "bnb_4bit_use_double_quant": True,
            },
            components_to_quantize=["text_encoder", "transformer", "unet"],
        )

        pipe = Cosmos2TextToImagePipeline.from_pretrained(
            self.model_id,
            torch_dtype=torch.bfloat16,
            quantization_config=config,
            use_safetensors=True,
            safety_checker=None,
            requires_safety_checker=False,
        ).to(self.device)
        return pipe


class CosmosRunner(BasePipelineRunner):
    def run(self, prompt: str, negative_prompt=None, **kwargs) -> Image.Image:
        return self.pipe(
            prompt=prompt, negative_prompt=negative_prompt, **kwargs
        ).images


# ===== Kolors =====
class KolorsLoader(BasePipelineLoader):
    def load(self):
        pipe = KolorsPipeline.from_pretrained(
            "Kwai-Kolors/Kolors-diffusers",
            torch_dtype=torch.float16,
            variant="fp16",
        ).to(self.device)
        pipe.enable_model_cpu_offload()
        pipe.enable_xformers_memory_efficient_attention()
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            pipe.scheduler.config, use_karras_sigmas=True
        )
        return pipe


class KolorsRunner(BasePipelineRunner):
    def run(self, prompt: str, **kwargs) -> Image.Image:
        return self.pipe(prompt=prompt, **kwargs).images


# ===== Flux =====
class FluxLoader(BasePipelineLoader):
    def load(self):
        os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
        pipe = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16
        )
        pipe.enable_model_cpu_offload()
        pipe.enable_xformers_memory_efficient_attention()
        pipe.enable_attention_slicing()
        return pipe.to(self.device)


class FluxRunner(BasePipelineRunner):
    def run(self, prompt: str, **kwargs) -> Image.Image:
        return self.pipe(prompt=prompt, **kwargs).images


# ===== Chroma =====
class ChromaLoader(BasePipelineLoader):
    def load(self):
        return ChromaPipeline.from_pretrained(
            "lodestones/Chroma", torch_dtype=torch.bfloat16
        ).to(self.device)


class ChromaRunner(BasePipelineRunner):
    def run(self, prompt: str, negative_prompt=None, **kwargs) -> Image.Image:
        return self.pipe(
            prompt=prompt, negative_prompt=negative_prompt, **kwargs
        ).images


PIPELINE_REGISTRY = {
    "sd35": (SD35Loader, SD35Runner),
    "cosmos": (CosmosLoader, CosmosRunner),
    "kolors": (KolorsLoader, KolorsRunner),
    "flux": (FluxLoader, FluxRunner),
    "chroma": (ChromaLoader, ChromaRunner),
}


def build_hf_image_pipeline(name: str, device="cuda") -> BasePipelineRunner:
    if name not in PIPELINE_REGISTRY:
        raise ValueError(f"Unsupported model: {name}")
    loader_cls, runner_cls = PIPELINE_REGISTRY[name]
    pipe = loader_cls(device=device).load()

    return runner_cls(pipe)


if __name__ == "__main__":
    model_name = "sd35"
    runner = build_hf_image_pipeline(model_name)
    # NOTE: Just for pipeline testing, generation quality at low resolution is poor.
    images = runner.run(
        prompt="A robot holding a sign that says 'Hello'",
        height=512,
        width=512,
        num_inference_steps=10,
        guidance_scale=6,
        num_images_per_prompt=1,
    )

    for i, img in enumerate(images):
        img.save(f"image_{model_name}_{i}.jpg")