Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,631 Bytes
0398906 8b70832 e1f4b2c 8b70832 2b95735 6f5d0e5 e1f4b2c 0398906 8b70832 0398906 575f14d 0398906 8b70832 0398906 5282e61 8b70832 0398906 ef8d7d6 0398906 5282e61 8b70832 0398906 6f5d0e5 0398906 575f14d 0398906 e1f4b2c 6f5d0e5 0398906 6f5d0e5 0398906 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import logging
import os
import random
import subprocess
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
UNet2DConditionModel,
)
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.unet_2d_condition import (
UNet2DConditionModel as UNet2DConditionModelIP,
)
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import (
StableDiffusionXLPipeline,
)
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import ( # noqa
StableDiffusionXLPipeline as StableDiffusionXLPipelineIP,
)
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
__all__ = [
"build_text2img_ip_pipeline",
"build_text2img_pipeline",
"text2img_gen",
"download_kolors_weights",
]
PROMPT_APPEND = (
"Angled 3D view of one {object}, centered, no cropping, no occlusion, isolated product photo, "
"no surroundings, high-quality appearance, vivid colors, on a plain clean surface, 3D style revealing multiple surfaces"
)
PROMPT_KAPPEND = "Single {object}, in the center of the image, white background, 3D style, best quality"
def download_kolors_weights(local_dir: str = "weights/Kolors") -> None:
logger.info(f"Download kolors weights from huggingface...")
os.makedirs(local_dir, exist_ok=True)
subprocess.run(
[
"huggingface-cli",
"download",
"--resume-download",
"Kwai-Kolors/Kolors",
"--local-dir",
local_dir,
],
check=True,
)
ip_adapter_path = f"{local_dir}/../Kolors-IP-Adapter-Plus"
subprocess.run(
[
"huggingface-cli",
"download",
"--resume-download",
"Kwai-Kolors/Kolors-IP-Adapter-Plus",
"--local-dir",
ip_adapter_path,
],
check=True,
)
def build_text2img_ip_pipeline(
ckpt_dir: str,
ref_scale: float,
device: str = "cuda",
) -> StableDiffusionXLPipelineIP:
download_kolors_weights(ckpt_dir)
text_encoder = ChatGLMModel.from_pretrained(
f"{ckpt_dir}/text_encoder", torch_dtype=torch.float16
).half()
tokenizer = ChatGLMTokenizer.from_pretrained(f"{ckpt_dir}/text_encoder")
vae = AutoencoderKL.from_pretrained(
f"{ckpt_dir}/vae", revision=None
).half()
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModelIP.from_pretrained(
f"{ckpt_dir}/unet", revision=None
).half()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f"{ckpt_dir}/../Kolors-IP-Adapter-Plus/image_encoder",
ignore_mismatched_sizes=True,
).to(dtype=torch.float16)
clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)
pipe = StableDiffusionXLPipelineIP(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False,
)
if hasattr(pipe.unet, "encoder_hid_proj"):
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
pipe.load_ip_adapter(
f"{ckpt_dir}/../Kolors-IP-Adapter-Plus",
subfolder="",
weight_name=["ip_adapter_plus_general.bin"],
)
pipe.set_ip_adapter_scale([ref_scale])
pipe = pipe.to(device)
pipe.image_encoder = pipe.image_encoder.to(device)
# pipe.enable_model_cpu_offload()
# pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_vae_slicing()
return pipe
def build_text2img_pipeline(
ckpt_dir: str,
device: str = "cuda",
) -> StableDiffusionXLPipeline:
download_kolors_weights(ckpt_dir)
text_encoder = ChatGLMModel.from_pretrained(
f"{ckpt_dir}/text_encoder", torch_dtype=torch.float16
).half()
tokenizer = ChatGLMTokenizer.from_pretrained(f"{ckpt_dir}/text_encoder")
vae = AutoencoderKL.from_pretrained(
f"{ckpt_dir}/vae", revision=None
).half()
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(
f"{ckpt_dir}/unet", revision=None
).half()
pipe = StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False,
)
pipe = pipe.to(device)
# pipe.enable_model_cpu_offload()
# pipe.enable_xformers_memory_efficient_attention()
return pipe
def text2img_gen(
prompt: str,
n_sample: int,
guidance_scale: float,
pipeline: StableDiffusionXLPipeline | StableDiffusionXLPipelineIP,
ip_image: Image.Image | str = None,
image_wh: tuple[int, int] = [1024, 1024],
infer_step: int = 50,
ip_image_size: int = 512,
seed: int = None,
) -> list[Image.Image]:
prompt = PROMPT_KAPPEND.format(object=prompt.strip())
logger.info(f"Processing prompt: {prompt}")
generator = None
if seed is not None:
generator = torch.Generator(pipeline.device).manual_seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
kwargs = dict(
prompt=prompt,
height=image_wh[1],
width=image_wh[0],
num_inference_steps=infer_step,
guidance_scale=guidance_scale,
num_images_per_prompt=n_sample,
generator=generator,
)
if ip_image is not None:
if isinstance(ip_image, str):
ip_image = Image.open(ip_image)
ip_image = ip_image.resize((ip_image_size, ip_image_size))
kwargs.update(ip_adapter_image=[ip_image])
return pipeline(**kwargs).images
|