Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,288 Bytes
575f14d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import os
import sys
import zipfile
import torch
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
def monkey_patch_pano2room():
current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
sys.path.append(os.path.join(current_dir, "../.."))
sys.path.append(os.path.join(current_dir, "../../thirdparty/pano2room"))
from thirdparty.pano2room.modules.geo_predictors.omnidata.omnidata_normal_predictor import (
OmnidataNormalPredictor,
)
from thirdparty.pano2room.modules.geo_predictors.omnidata.omnidata_predictor import (
OmnidataPredictor,
)
def patched_omni_depth_init(self):
self.img_size = 384
self.model = torch.hub.load(
'alexsax/omnidata_models', 'depth_dpt_hybrid_384'
)
self.model.eval()
self.trans_totensor = transforms.Compose(
[
transforms.Resize(self.img_size, interpolation=Image.BILINEAR),
transforms.CenterCrop(self.img_size),
transforms.Normalize(mean=0.5, std=0.5),
]
)
OmnidataPredictor.__init__ = patched_omni_depth_init
def patched_omni_normal_init(self):
self.img_size = 384
self.model = torch.hub.load(
'alexsax/omnidata_models', 'surface_normal_dpt_hybrid_384'
)
self.model.eval()
self.trans_totensor = transforms.Compose(
[
transforms.Resize(self.img_size, interpolation=Image.BILINEAR),
transforms.CenterCrop(self.img_size),
transforms.Normalize(mean=0.5, std=0.5),
]
)
OmnidataNormalPredictor.__init__ = patched_omni_normal_init
def patched_panojoint_init(self, save_path=None):
self.depth_predictor = OmnidataPredictor()
self.normal_predictor = OmnidataNormalPredictor()
self.save_path = save_path
from modules.geo_predictors import PanoJointPredictor
PanoJointPredictor.__init__ = patched_panojoint_init
# NOTE: We use gsplat instead.
# import depth_diff_gaussian_rasterization_min as ddgr
# from dataclasses import dataclass
# @dataclass
# class PatchedGaussianRasterizationSettings:
# image_height: int
# image_width: int
# tanfovx: float
# tanfovy: float
# bg: torch.Tensor
# scale_modifier: float
# viewmatrix: torch.Tensor
# projmatrix: torch.Tensor
# sh_degree: int
# campos: torch.Tensor
# prefiltered: bool
# debug: bool = False
# ddgr.GaussianRasterizationSettings = PatchedGaussianRasterizationSettings
# disable get_has_ddp_rank print in `BaseInpaintingTrainingModule`
os.environ["NODE_RANK"] = "0"
from thirdparty.pano2room.modules.inpainters.lama.saicinpainting.training.trainers import (
load_checkpoint,
)
from thirdparty.pano2room.modules.inpainters.lama_inpainter import (
LamaInpainter,
)
def patched_lama_inpaint_init(self):
zip_path = hf_hub_download(
repo_id="smartywu/big-lama",
filename="big-lama.zip",
repo_type="model",
)
extract_dir = os.path.splitext(zip_path)[0]
if not os.path.exists(extract_dir):
os.makedirs(extract_dir, exist_ok=True)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_dir)
config_path = os.path.join(extract_dir, 'big-lama', 'config.yaml')
checkpoint_path = os.path.join(
extract_dir, 'big-lama/models/best.ckpt'
)
train_config = OmegaConf.load(config_path)
train_config.training_model.predict_only = True
train_config.visualizer.kind = 'noop'
self.model = load_checkpoint(
train_config, checkpoint_path, strict=False, map_location='cpu'
)
self.model.freeze()
LamaInpainter.__init__ = patched_lama_inpaint_init
from diffusers import StableDiffusionInpaintPipeline
from thirdparty.pano2room.modules.inpainters.SDFT_inpainter import (
SDFTInpainter,
)
def patched_sd_inpaint_init(self, subset_name=None):
super(SDFTInpainter, self).__init__()
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_model_cpu_offload()
self.inpaint_pipe = pipe
SDFTInpainter.__init__ = patched_sd_inpaint_init
|