File size: 12,599 Bytes
0398906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575f14d
0398906
575f14d
0398906
 
 
 
 
575f14d
 
0398906
 
575f14d
0398906
575f14d
73b3d3a
575f14d
0398906
 
 
 
 
 
 
 
 
 
575f14d
 
 
 
 
0398906
 
 
 
 
 
 
 
 
 
575f14d
0398906
 
 
 
 
575f14d
 
0398906
73b3d3a
 
 
 
 
 
 
 
575f14d
 
 
 
 
73b3d3a
575f14d
0398906
73b3d3a
 
0398906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575f14d
0398906
 
 
575f14d
0398906
575f14d
 
 
0398906
 
 
 
 
 
 
 
575f14d
0398906
 
 
 
575f14d
0398906
 
 
 
 
575f14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0398906
575f14d
 
 
 
 
 
 
 
 
0398906
575f14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0398906
 
575f14d
 
 
0398906
 
575f14d
 
 
 
 
 
 
 
 
0398906
575f14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0398906
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.


import logging
import math
import mimetypes
import os
import textwrap
from glob import glob
from typing import Union

import cv2
import imageio
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import spaces
from matplotlib.patches import Patch
from moviepy.editor import VideoFileClip, clips_array
from PIL import Image
from embodied_gen.data.differentiable_render import entrypoint as render_api
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


__all__ = [
    "render_asset3d",
    "merge_images_video",
    "filter_small_connected_components",
    "filter_image_small_connected_components",
    "combine_images_to_grid",
    "SceneTreeVisualizer",
    "is_image_file",
    "parse_text_prompts",
    "check_object_edge_truncated",
]


@spaces.GPU
def render_asset3d(
    mesh_path: str,
    output_root: str,
    distance: float = 5.0,
    num_images: int = 1,
    elevation: list[float] = (0.0,),
    pbr_light_factor: float = 1.2,
    return_key: str = "image_color/*",
    output_subdir: str = "renders",
    gen_color_mp4: bool = False,
    gen_viewnormal_mp4: bool = False,
    gen_glonormal_mp4: bool = False,
    no_index_file: bool = False,
    with_mtl: bool = True,
) -> list[str]:
    input_args = dict(
        mesh_path=mesh_path,
        output_root=output_root,
        uuid=output_subdir,
        distance=distance,
        num_images=num_images,
        elevation=elevation,
        pbr_light_factor=pbr_light_factor,
        with_mtl=with_mtl,
        gen_color_mp4=gen_color_mp4,
        gen_viewnormal_mp4=gen_viewnormal_mp4,
        gen_glonormal_mp4=gen_glonormal_mp4,
        no_index_file=no_index_file,
    )

    try:
        _ = render_api(**input_args)
    except Exception as e:
        logger.error(f"Error occurred during rendering: {e}.")

    dst_paths = glob(os.path.join(output_root, output_subdir, return_key))

    return dst_paths


def merge_images_video(color_images, normal_images, output_path) -> None:
    width = color_images[0].shape[1]
    combined_video = [
        np.hstack([rgb_img[:, : width // 2], normal_img[:, width // 2 :]])
        for rgb_img, normal_img in zip(color_images, normal_images)
    ]
    imageio.mimsave(output_path, combined_video, fps=50)

    return


def merge_video_video(
    video_path1: str, video_path2: str, output_path: str
) -> None:
    """Merge two videos by the left half and the right half of the videos."""
    clip1 = VideoFileClip(video_path1)
    clip2 = VideoFileClip(video_path2)

    if clip1.size != clip2.size:
        raise ValueError("The resolutions of the two videos do not match.")

    width, height = clip1.size
    clip1_half = clip1.crop(x1=0, y1=0, x2=width // 2, y2=height)
    clip2_half = clip2.crop(x1=width // 2, y1=0, x2=width, y2=height)
    final_clip = clips_array([[clip1_half, clip2_half]])
    final_clip.write_videofile(output_path, codec="libx264")


def filter_small_connected_components(
    mask: Union[Image.Image, np.ndarray],
    area_ratio: float,
    connectivity: int = 8,
) -> np.ndarray:
    if isinstance(mask, Image.Image):
        mask = np.array(mask)
    num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(
        mask,
        connectivity=connectivity,
    )

    small_components = np.zeros_like(mask, dtype=np.uint8)
    mask_area = (mask != 0).sum()
    min_area = mask_area // area_ratio
    for label in range(1, num_labels):
        area = stats[label, cv2.CC_STAT_AREA]
        if area < min_area:
            small_components[labels == label] = 255

    mask = cv2.bitwise_and(mask, cv2.bitwise_not(small_components))

    return mask


def filter_image_small_connected_components(
    image: Union[Image.Image, np.ndarray],
    area_ratio: float = 10,
    connectivity: int = 8,
) -> np.ndarray:
    if isinstance(image, Image.Image):
        image = image.convert("RGBA")
        image = np.array(image)

    mask = image[..., 3]
    mask = filter_small_connected_components(mask, area_ratio, connectivity)
    image[..., 3] = mask

    return image


def combine_images_to_grid(
    images: list[str | Image.Image],
    cat_row_col: tuple[int, int] = None,
    target_wh: tuple[int, int] = (512, 512),
) -> list[str | Image.Image]:
    n_images = len(images)
    if n_images == 1:
        return images

    if cat_row_col is None:
        n_col = math.ceil(math.sqrt(n_images))
        n_row = math.ceil(n_images / n_col)
    else:
        n_row, n_col = cat_row_col

    images = [
        Image.open(p).convert("RGB") if isinstance(p, str) else p
        for p in images
    ]
    images = [img.resize(target_wh) for img in images]

    grid_w, grid_h = n_col * target_wh[0], n_row * target_wh[1]
    grid = Image.new("RGB", (grid_w, grid_h), (0, 0, 0))

    for idx, img in enumerate(images):
        row, col = divmod(idx, n_col)
        grid.paste(img, (col * target_wh[0], row * target_wh[1]))

    return [grid]


class SceneTreeVisualizer:
    def __init__(self, layout_info: LayoutInfo) -> None:
        self.tree = layout_info.tree
        self.relation = layout_info.relation
        self.objs_desc = layout_info.objs_desc
        self.G = nx.DiGraph()
        self.root = self._find_root()
        self._build_graph()

        self.role_colors = {
            Scene3DItemEnum.BACKGROUND.value: "plum",
            Scene3DItemEnum.CONTEXT.value: "lightblue",
            Scene3DItemEnum.ROBOT.value: "lightcoral",
            Scene3DItemEnum.MANIPULATED_OBJS.value: "lightgreen",
            Scene3DItemEnum.DISTRACTOR_OBJS.value: "lightgray",
            Scene3DItemEnum.OTHERS.value: "orange",
        }

    def _find_root(self) -> str:
        children = {c for cs in self.tree.values() for c, _ in cs}
        parents = set(self.tree.keys())
        roots = parents - children
        if not roots:
            raise ValueError("No root node found.")
        return next(iter(roots))

    def _build_graph(self):
        for parent, children in self.tree.items():
            for child, relation in children:
                self.G.add_edge(parent, child, relation=relation)

    def _get_node_role(self, node: str) -> str:
        if node == self.relation.get(Scene3DItemEnum.BACKGROUND.value):
            return Scene3DItemEnum.BACKGROUND.value
        if node == self.relation.get(Scene3DItemEnum.CONTEXT.value):
            return Scene3DItemEnum.CONTEXT.value
        if node == self.relation.get(Scene3DItemEnum.ROBOT.value):
            return Scene3DItemEnum.ROBOT.value
        if node in self.relation.get(
            Scene3DItemEnum.MANIPULATED_OBJS.value, []
        ):
            return Scene3DItemEnum.MANIPULATED_OBJS.value
        if node in self.relation.get(
            Scene3DItemEnum.DISTRACTOR_OBJS.value, []
        ):
            return Scene3DItemEnum.DISTRACTOR_OBJS.value
        return Scene3DItemEnum.OTHERS.value

    def _get_positions(
        self, root, width=1.0, vert_gap=0.1, vert_loc=1, xcenter=0.5, pos=None
    ):
        if pos is None:
            pos = {root: (xcenter, vert_loc)}
        else:
            pos[root] = (xcenter, vert_loc)

        children = list(self.G.successors(root))
        if children:
            dx = width / len(children)
            next_x = xcenter - width / 2 - dx / 2
            for child in children:
                next_x += dx
                pos = self._get_positions(
                    child,
                    width=dx,
                    vert_gap=vert_gap,
                    vert_loc=vert_loc - vert_gap,
                    xcenter=next_x,
                    pos=pos,
                )
        return pos

    def render(
        self,
        save_path: str,
        figsize=(8, 6),
        dpi=300,
        title: str = "Scene 3D Hierarchy Tree",
    ):
        node_colors = [
            self.role_colors[self._get_node_role(n)] for n in self.G.nodes
        ]
        pos = self._get_positions(self.root)

        plt.figure(figsize=figsize)
        nx.draw(
            self.G,
            pos,
            with_labels=True,
            arrows=False,
            node_size=2000,
            node_color=node_colors,
            font_size=10,
            font_weight="bold",
        )

        # Draw edge labels
        edge_labels = nx.get_edge_attributes(self.G, "relation")
        nx.draw_networkx_edge_labels(
            self.G,
            pos,
            edge_labels=edge_labels,
            font_size=9,
            font_color="black",
        )

        # Draw small description text under each node (if available)
        for node, (x, y) in pos.items():
            desc = self.objs_desc.get(node)
            if desc:
                wrapped = "\n".join(textwrap.wrap(desc, width=30))
                plt.text(
                    x,
                    y - 0.006,
                    wrapped,
                    fontsize=6,
                    ha="center",
                    va="top",
                    wrap=True,
                    color="black",
                    bbox=dict(
                        facecolor="dimgray",
                        edgecolor="darkgray",
                        alpha=0.1,
                        boxstyle="round,pad=0.2",
                    ),
                )

        plt.title(title, fontsize=12)
        task_desc = self.relation.get("task_desc", "")
        if task_desc:
            plt.suptitle(
                f"Task Description: {task_desc}", fontsize=10, y=0.999
            )

        plt.axis("off")

        legend_handles = [
            Patch(facecolor=color, edgecolor='black', label=role)
            for role, color in self.role_colors.items()
        ]
        plt.legend(
            handles=legend_handles,
            loc="lower center",
            ncol=3,
            bbox_to_anchor=(0.5, -0.1),
            fontsize=9,
        )

        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        plt.savefig(save_path, dpi=dpi, bbox_inches="tight")
        plt.close()


def load_scene_dict(file_path: str) -> dict:
    scene_dict = {}
    with open(file_path, "r", encoding='utf-8') as f:
        for line in f:
            line = line.strip()
            if not line or ":" not in line:
                continue
            scene_id, desc = line.split(":", 1)
            scene_dict[scene_id.strip()] = desc.strip()

    return scene_dict


def is_image_file(filename: str) -> bool:
    mime_type, _ = mimetypes.guess_type(filename)

    return mime_type is not None and mime_type.startswith('image')


def parse_text_prompts(prompts: list[str]) -> list[str]:
    if len(prompts) == 1 and prompts[0].endswith(".txt"):
        with open(prompts[0], "r") as f:
            prompts = [
                line.strip()
                for line in f
                if line.strip() and not line.strip().startswith("#")
            ]
    return prompts


def check_object_edge_truncated(
    mask: np.ndarray, edge_threshold: int = 5
) -> bool:
    """Checks if a binary object mask is truncated at the image edges.

    Args:
        mask: A 2D binary NumPy array where nonzero values indicate the object region.
        edge_threshold: Number of pixels from each image edge to consider for truncation.
            Defaults to 5.

    Returns:
        True if the object is fully enclosed (not truncated).
        False if the object touches or crosses any image boundary.
    """
    top = mask[:edge_threshold, :].any()
    bottom = mask[-edge_threshold:, :].any()
    left = mask[:, :edge_threshold].any()
    right = mask[:, -edge_threshold:].any()

    return not (top or bottom or left or right)


if __name__ == "__main__":
    merge_video_video(
        "outputs/imageto3d/room_bottle7/room_bottle_007/URDF_room_bottle_007/mesh_glo_normal.mp4",  # noqa
        "outputs/imageto3d/room_bottle7/room_bottle_007/URDF_room_bottle_007/mesh.mp4",  # noqa
        "merge.mp4",
    )