Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from transformers import AutoModel | |
class TransformerClassifier(nn.Module): | |
def __init__(self, model_name, output_dim): | |
super(TransformerClassifier, self).__init__() | |
self.transformer = AutoModel.from_pretrained(model_name) | |
# Freeze bottom 3 layers, unfreeze top layers | |
for name, param in self.transformer.named_parameters(): | |
if "layer.0" in name or "layer.1" in name or "layer.2" in name: | |
param.requires_grad = False | |
self.fc = nn.Linear(self.transformer.config.hidden_size, output_dim) | |
def forward(self, input_ids, attention_mask): | |
outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask) | |
hidden_state = outputs.last_hidden_state # [batch_size, seq_len, hidden_dim] | |
pooled_output = hidden_state[:, 0] # Use CLS token output | |
out = self.fc(pooled_output) | |
return out | |