SentiNet / models /transformer.py
Hunter-Pax's picture
Upload 18 files
e7a44ba verified
raw
history blame contribute delete
960 Bytes
import torch
import torch.nn as nn
from transformers import AutoModel
class TransformerClassifier(nn.Module):
def __init__(self, model_name, output_dim):
super(TransformerClassifier, self).__init__()
self.transformer = AutoModel.from_pretrained(model_name)
# Freeze bottom 3 layers, unfreeze top layers
for name, param in self.transformer.named_parameters():
if "layer.0" in name or "layer.1" in name or "layer.2" in name:
param.requires_grad = False
self.fc = nn.Linear(self.transformer.config.hidden_size, output_dim)
def forward(self, input_ids, attention_mask):
outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
hidden_state = outputs.last_hidden_state # [batch_size, seq_len, hidden_dim]
pooled_output = hidden_state[:, 0] # Use CLS token output
out = self.fc(pooled_output)
return out