IndexTTS-2-Demo / indextts /infer_v2.py
kemuriririn's picture
disable deepspeed and cuda kernel
04be12f
import os
from subprocess import CalledProcessError
import time
import librosa
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from omegaconf import OmegaConf
from indextts.gpt.model_v2 import UnifiedVoice
from indextts.utils.maskgct_utils import build_semantic_model, build_semantic_codec
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.front import TextNormalizer, TextTokenizer
from indextts.s2mel.modules.commons import load_checkpoint2, MyModel
from indextts.s2mel.modules.bigvgan import bigvgan
from indextts.s2mel.modules.campplus.DTDNN import CAMPPlus
from indextts.s2mel.modules.audio import mel_spectrogram
from transformers import AutoTokenizer
from modelscope import AutoModelForCausalLM
from huggingface_hub import hf_hub_download
import safetensors
from transformers import SeamlessM4TFeatureExtractor
import random
import torch.nn.functional as F
class IndexTTS2:
def __init__(
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", is_fp16=False, device=None,
use_cuda_kernel=None,use_deepspeed=False
):
"""
Args:
cfg_path (str): path to the config file.
model_dir (str): path to the model directory.
is_fp16 (bool): whether to use fp16.
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
"""
if device is not None:
self.device = device
self.is_fp16 = False if device == "cpu" else is_fp16
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
elif torch.cuda.is_available():
self.device = "cuda:0"
self.is_fp16 = is_fp16
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
self.device = "mps"
self.is_fp16 = False # Use float16 on MPS is overhead than float32
self.use_cuda_kernel = False
else:
self.device = "cpu"
self.is_fp16 = False
self.use_cuda_kernel = False
print(">> Be patient, it may take a while to run in CPU mode.")
self.cfg = OmegaConf.load(cfg_path)
self.model_dir = model_dir
self.dtype = torch.float16 if self.is_fp16 else None
self.stop_mel_token = self.cfg.gpt.stop_mel_token
self.qwen_emo = QwenEmotion(os.path.join(self.model_dir, self.cfg.qwen_emo_path))
self.gpt = UnifiedVoice(**self.cfg.gpt)
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
load_checkpoint(self.gpt, self.gpt_path)
self.gpt = self.gpt.to(self.device)
if self.is_fp16:
self.gpt.eval().half()
else:
self.gpt.eval()
print(">> GPT weights restored from:", self.gpt_path)
if self.is_fp16:
try:
import deepspeed
except (ImportError, OSError, CalledProcessError) as e:
use_deepspeed = False
print(f">> DeepSpeed加载失败,回退到标准推理: {e}")
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=True)
else:
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=False)
if self.use_cuda_kernel:
# preload the CUDA kernel for BigVGAN
try:
from indextts.BigVGAN.alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
except:
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
self.use_cuda_kernel = False
self.extract_features = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
self.semantic_model, self.semantic_mean, self.semantic_std = build_semantic_model(
os.path.join(self.model_dir, self.cfg.w2v_stat))
self.semantic_model = self.semantic_model.to(self.device)
self.semantic_model.eval()
self.semantic_mean = self.semantic_mean.to(self.device)
self.semantic_std = self.semantic_std.to(self.device)
semantic_codec = build_semantic_codec(self.cfg.semantic_codec)
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT", filename="semantic_codec/model.safetensors")
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
self.semantic_codec = semantic_codec.to(self.device)
self.semantic_codec.eval()
print('>> semantic_codec weights restored from: {}'.format(semantic_code_ckpt))
s2mel_path = os.path.join(self.model_dir, self.cfg.s2mel_checkpoint)
s2mel = MyModel(self.cfg.s2mel, use_gpt_latent=True)
s2mel, _, _, _ = load_checkpoint2(
s2mel,
None,
s2mel_path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
)
self.s2mel = s2mel.to(self.device)
self.s2mel.models['cfm'].estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
self.s2mel.eval()
print(">> s2mel weights restored from:", s2mel_path)
# load campplus_model
campplus_ckpt_path = hf_hub_download(
"funasr/campplus", filename="campplus_cn_common.bin"
)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
self.campplus_model = campplus_model.to(self.device)
self.campplus_model.eval()
print(">> campplus_model weights restored from:", campplus_ckpt_path)
bigvgan_name = self.cfg.vocoder.name
self.bigvgan = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
self.bigvgan = self.bigvgan.to(self.device)
self.bigvgan.remove_weight_norm()
self.bigvgan.eval()
print(">> bigvgan weights restored from:", bigvgan_name)
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
self.normalizer = TextNormalizer()
self.normalizer.load()
print(">> TextNormalizer loaded")
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
print(">> bpe model loaded from:", self.bpe_path)
emo_matrix = torch.load(os.path.join(self.model_dir, self.cfg.emo_matrix))
self.emo_matrix = emo_matrix.to(self.device)
self.emo_num = list(self.cfg.emo_num)
spk_matrix = torch.load(os.path.join(self.model_dir, self.cfg.spk_matrix))
self.spk_matrix = spk_matrix.to(self.device)
self.emo_matrix = torch.split(self.emo_matrix, self.emo_num)
self.spk_matrix = torch.split(self.spk_matrix, self.emo_num)
mel_fn_args = {
"n_fft": self.cfg.s2mel['preprocess_params']['spect_params']['n_fft'],
"win_size": self.cfg.s2mel['preprocess_params']['spect_params']['win_length'],
"hop_size": self.cfg.s2mel['preprocess_params']['spect_params']['hop_length'],
"num_mels": self.cfg.s2mel['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": self.cfg.s2mel["preprocess_params"]["sr"],
"fmin": self.cfg.s2mel['preprocess_params']['spect_params'].get('fmin', 0),
"fmax": None if self.cfg.s2mel['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
"center": False
}
self.mel_fn = lambda x: mel_spectrogram(x, **mel_fn_args)
# 缓存参考音频:
self.cache_spk_cond = None
self.cache_s2mel_style = None
self.cache_s2mel_prompt = None
self.cache_spk_audio_prompt = None
self.cache_emo_cond = None
self.cache_emo_audio_prompt = None
self.cache_mel = None
# 进度引用显示(可选)
self.gr_progress = None
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
@torch.no_grad()
def get_emb(self, input_features, attention_mask):
vq_emb = self.semantic_model(
input_features=input_features,
attention_mask=attention_mask,
output_hidden_states=True,
)
feat = vq_emb.hidden_states[17] # (B, T, C)
feat = (feat - self.semantic_mean) / self.semantic_std
return feat
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
"""
Shrink special tokens (silent_token and stop_mel_token) in codes
codes: [B, T]
"""
code_lens = []
codes_list = []
device = codes.device
dtype = codes.dtype
isfix = False
for i in range(0, codes.shape[0]):
code = codes[i]
if not torch.any(code == self.stop_mel_token).item():
len_ = code.size(0)
else:
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
count = torch.sum(code == silent_token).item()
if count > max_consecutive:
# code = code.cpu().tolist()
ncode_idx = []
n = 0
for k in range(len_):
assert code[
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
if code[k] != silent_token:
ncode_idx.append(k)
n = 0
elif code[k] == silent_token and n < 10:
ncode_idx.append(k)
n += 1
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
# n += 1
# new code
len_ = len(ncode_idx)
codes_list.append(code[ncode_idx])
isfix = True
else:
# shrink to len_
codes_list.append(code[:len_])
code_lens.append(len_)
if isfix:
if len(codes_list) > 1:
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
else:
codes = codes_list[0].unsqueeze(0)
else:
# unchanged
pass
# clip codes to max length
max_len = max(code_lens)
if max_len < codes.shape[1]:
codes = codes[:, :max_len]
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
return codes, code_lens
def insert_interval_silence(self, wavs, sampling_rate=22050, interval_silence=200):
"""
Insert silences between sentences.
wavs: List[torch.tensor]
"""
if not wavs or interval_silence <= 0:
return wavs
# get channel_size
channel_size = wavs[0].size(0)
# get silence tensor
sil_dur = int(sampling_rate * interval_silence / 1000.0)
sil_tensor = torch.zeros(channel_size, sil_dur)
wavs_list = []
for i, wav in enumerate(wavs):
wavs_list.append(wav)
if i < len(wavs) - 1:
wavs_list.append(sil_tensor)
return wavs_list
def _set_gr_progress(self, value, desc):
if self.gr_progress is not None:
self.gr_progress(value, desc=desc)
# 原始推理模式
def infer(self, spk_audio_prompt, text, output_path,
emo_audio_prompt=None, emo_alpha=1.0,
emo_vector=None,
use_emo_text=False, emo_text=None, use_random=False, interval_silence=200,
verbose=False, max_text_tokens_per_sentence=120, **generation_kwargs):
print(">> start inference...")
self._set_gr_progress(0, "start inference...")
if verbose:
print(f"origin text:{text}, spk_audio_prompt:{spk_audio_prompt},"
f" emo_audio_prompt:{emo_audio_prompt}, emo_alpha:{emo_alpha}, "
f"emo_vector:{emo_vector}, use_emo_text:{use_emo_text}, "
f"emo_text:{emo_text}")
start_time = time.perf_counter()
if use_emo_text:
emo_audio_prompt = None
emo_alpha = 1.0
# assert emo_audio_prompt is None
# assert emo_alpha == 1.0
if emo_text is None:
emo_text = text
emo_dict, content = self.qwen_emo.inference(emo_text)
print(emo_dict)
emo_vector = list(emo_dict.values())
if emo_vector is not None:
emo_audio_prompt = None
emo_alpha = 1.0
# assert emo_audio_prompt is None
# assert emo_alpha == 1.0
if emo_audio_prompt is None:
emo_audio_prompt = spk_audio_prompt
emo_alpha = 1.0
# assert emo_alpha == 1.0
# 如果参考音频改变了,才需要重新生成, 提升速度
if self.cache_spk_cond is None or self.cache_spk_audio_prompt != spk_audio_prompt:
audio, sr = librosa.load(spk_audio_prompt)
audio = torch.tensor(audio).unsqueeze(0)
audio_22k = torchaudio.transforms.Resample(sr, 22050)(audio)
audio_16k = torchaudio.transforms.Resample(sr, 16000)(audio)
inputs = self.extract_features(audio_16k, sampling_rate=16000, return_tensors="pt")
input_features = inputs["input_features"]
attention_mask = inputs["attention_mask"]
input_features = input_features.to(self.device)
attention_mask = attention_mask.to(self.device)
spk_cond_emb = self.get_emb(input_features, attention_mask)
_, S_ref = self.semantic_codec.quantize(spk_cond_emb)
ref_mel = self.mel_fn(audio_22k.to(spk_cond_emb.device).float())
ref_target_lengths = torch.LongTensor([ref_mel.size(2)]).to(ref_mel.device)
feat = torchaudio.compliance.kaldi.fbank(audio_16k.to(ref_mel.device),
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True) # feat2另外一个滤波器能量组特征[922, 80]
style = self.campplus_model(feat.unsqueeze(0)) # 参考音频的全局style2[1,192]
prompt_condition = self.s2mel.models['length_regulator'](S_ref,
ylens=ref_target_lengths,
n_quantizers=3,
f0=None)[0]
self.cache_spk_cond = spk_cond_emb
self.cache_s2mel_style = style
self.cache_s2mel_prompt = prompt_condition
self.cache_spk_audio_prompt = spk_audio_prompt
self.cache_mel = ref_mel
else:
style = self.cache_s2mel_style
prompt_condition = self.cache_s2mel_prompt
spk_cond_emb = self.cache_spk_cond
ref_mel = self.cache_mel
if emo_vector is not None:
weight_vector = torch.tensor(emo_vector).to(self.device)
if use_random:
random_index = [random.randint(0, x - 1) for x in self.emo_num]
else:
random_index = [find_most_similar_cosine(style, tmp) for tmp in self.spk_matrix]
emo_matrix = [tmp[index].unsqueeze(0) for index, tmp in zip(random_index, self.emo_matrix)]
emo_matrix = torch.cat(emo_matrix, 0)
emovec_mat = weight_vector.unsqueeze(1) * emo_matrix
emovec_mat = torch.sum(emovec_mat, 0)
emovec_mat = emovec_mat.unsqueeze(0)
if self.cache_emo_cond is None or self.cache_emo_audio_prompt != emo_audio_prompt:
emo_audio, _ = librosa.load(emo_audio_prompt, sr=16000)
emo_inputs = self.extract_features(emo_audio, sampling_rate=16000, return_tensors="pt")
emo_input_features = emo_inputs["input_features"]
emo_attention_mask = emo_inputs["attention_mask"]
emo_input_features = emo_input_features.to(self.device)
emo_attention_mask = emo_attention_mask.to(self.device)
emo_cond_emb = self.get_emb(emo_input_features, emo_attention_mask)
self.cache_emo_cond = emo_cond_emb
self.cache_emo_audio_prompt = emo_audio_prompt
else:
emo_cond_emb = self.cache_emo_cond
self._set_gr_progress(0.1, "text processing...")
text_tokens_list = self.tokenizer.tokenize(text)
sentences = self.tokenizer.split_sentences(text_tokens_list, max_text_tokens_per_sentence)
if verbose:
print("text_tokens_list:", text_tokens_list)
print("sentences count:", len(sentences))
print("max_text_tokens_per_sentence:", max_text_tokens_per_sentence)
print(*sentences, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 0.8)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 1500)
sampling_rate = 22050
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
s2mel_time = 0
bigvgan_time = 0
progress = 0
has_warned = False
for sent in sentences:
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as sentence tokens", text_token_syms == sent)
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
emovec = self.gpt.merge_emovec(
spk_cond_emb,
emo_cond_emb,
torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
alpha=emo_alpha
)
if emo_vector is not None:
emovec = emovec_mat + (1 - torch.sum(weight_vector)) * emovec
# emovec = emovec_mat
codes, speech_conditioning_latent = self.gpt.inference_speech(
spk_cond_emb,
text_tokens,
emo_cond_emb,
cond_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
emo_cond_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
emo_vec=emovec,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs
)
gpt_gen_time += time.perf_counter() - m_start_time
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Input text tokens: {text_tokens.shape[1]}. "
f"Consider reducing `max_text_tokens_per_sentence`({max_text_tokens_per_sentence}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
# if verbose:
# print(codes, type(codes))
# print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
# print(f"code len: {code_lens}")
code_lens = []
for code in codes:
if self.stop_mel_token not in code:
code_lens.append(len(code))
code_len = len(code)
else:
len_ = (code == self.stop_mel_token).nonzero(as_tuple=False)[0] + 1
code_len = len_ - 1
code_lens.append(code_len)
codes = codes[:, :code_len]
code_lens = torch.LongTensor(code_lens)
code_lens = code_lens.to(self.device)
if verbose:
print(codes, type(codes))
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
m_start_time = time.perf_counter()
use_speed = torch.zeros(spk_cond_emb.size(0)).to(spk_cond_emb.device).long()
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = self.gpt(
speech_conditioning_latent,
text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device),
codes,
torch.tensor([codes.shape[-1]], device=text_tokens.device),
emo_cond_emb,
cond_mel_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
emo_cond_mel_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
emo_vec=emovec,
use_speed=use_speed,
)
gpt_forward_time += time.perf_counter() - m_start_time
dtype = None
with torch.amp.autocast(text_tokens.device.type, enabled=dtype is not None, dtype=dtype):
m_start_time = time.perf_counter()
diffusion_steps = 25
inference_cfg_rate = 0.7
latent = self.s2mel.models['gpt_layer'](latent)
S_infer = self.semantic_codec.quantizer.vq2emb(codes.unsqueeze(1))
S_infer = S_infer.transpose(1, 2)
S_infer = S_infer + latent
target_lengths = (code_lens * 1.72).long()
cond = self.s2mel.models['length_regulator'](S_infer,
ylens=target_lengths,
n_quantizers=3,
f0=None)[0]
cat_condition = torch.cat([prompt_condition, cond], dim=1)
vc_target = self.s2mel.models['cfm'].inference(cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(
cond.device),
ref_mel, style, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate)
vc_target = vc_target[:, :, ref_mel.size(-1):]
s2mel_time += time.perf_counter() - m_start_time
m_start_time = time.perf_counter()
wav = self.bigvgan(vc_target.float()).squeeze().unsqueeze(0)
print(wav.shape)
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
if verbose:
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
# wavs.append(wav[:, :-512])
wavs.append(wav.cpu()) # to cpu before saving
end_time = time.perf_counter()
self._set_gr_progress(0.9, "save audio...")
wavs = self.insert_interval_silence(wavs, sampling_rate=sampling_rate, interval_silence=interval_silence)
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> s2mel_time: {s2mel_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
if os.path.isfile(output_path):
os.remove(output_path)
print(">> remove old wav file:", output_path)
if os.path.dirname(output_path) != "":
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
def find_most_similar_cosine(query_vector, matrix):
query_vector = query_vector.float()
matrix = matrix.float()
similarities = F.cosine_similarity(query_vector, matrix, dim=1)
most_similar_index = torch.argmax(similarities)
return most_similar_index
class QwenEmotion:
def __init__(self, model_dir):
self.model_dir = model_dir
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_dir,
torch_dtype="float16", # "auto"
device_map="auto"
)
self.prompt = "文本情感分类"
self.convert_dict = {
"愤怒": "angry",
"高兴": "happy",
"恐惧": "fear",
"反感": "hate",
"悲伤": "sad",
"低落": "low",
"惊讶": "surprise",
"自然": "neutral",
}
self.backup_dict = {"happy": 0, "angry": 0, "sad": 0, "fear": 0, "hate": 0, "low": 0, "surprise": 0,
"neutral": 1.0}
self.max_score = 1.2
self.min_score = 0.0
def convert(self, content):
content = content.replace("\n", " ")
content = content.replace(" ", "")
content = content.replace("{", "")
content = content.replace("}", "")
content = content.replace('"', "")
parts = content.strip().split(',')
print(parts)
parts_dict = {}
desired_order = ["高兴", "愤怒", "悲伤", "恐惧", "反感", "低落", "惊讶", "自然"]
for part in parts:
key_value = part.strip().split(':')
if len(key_value) == 2:
parts_dict[key_value[0].strip()] = part
# 按照期望顺序重新排列
ordered_parts = [parts_dict[key] for key in desired_order if key in parts_dict]
parts = ordered_parts
if len(parts) != len(self.convert_dict):
return self.backup_dict
emotion_dict = {}
for part in parts:
key_value = part.strip().split(':')
if len(key_value) == 2:
try:
key = self.convert_dict[key_value[0].strip()]
value = float(key_value[1].strip())
value = max(self.min_score, min(self.max_score, value))
emotion_dict[key] = value
except Exception:
continue
for key in self.backup_dict:
if key not in emotion_dict:
emotion_dict[key] = 0.0
if sum(emotion_dict.values()) <= 0:
return self.backup_dict
return emotion_dict
def inference(self, text_input):
start = time.time()
messages = [
{"role": "system", "content": f"{self.prompt}"},
{"role": "user", "content": f"{text_input}"}
]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
# conduct text completion
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=32768,
pad_token_id=self.tokenizer.eos_token_id
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
content = self.tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
emotion_dict = self.convert(content)
return emotion_dict, content
if __name__ == "__main__":
prompt_wav = "examples/voice_01.wav"
text = '欢迎大家来体验indextts2,并给予我们意见与反馈,谢谢大家。'
tts = IndexTTS2(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
tts.infer(spk_audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)