Spaces:
Paused
Paused
## Training with Paired Data (pix2pix-turbo) | |
Here, we show how to train a pix2pix-turbo model using paired data. | |
We will use the [Fill50k dataset](https://github.com/lllyasviel/ControlNet/blob/main/docs/train.md) used by [ControlNet](https://github.com/lllyasviel/ControlNet) as an example dataset. | |
### Step 1. Get the Dataset | |
- First download a modified Fill50k dataset from [here](https://www.cs.cmu.edu/~img2img-turbo/data/my_fill50k.zip) using the command below. | |
``` | |
bash scripts/download_fill50k.sh | |
``` | |
- Our training scripts expect the dataset to be in the following format: | |
``` | |
data | |
βββ dataset_name | |
β βββ train_A | |
β β βββ 000000.png | |
β β βββ 000001.png | |
β β βββ ... | |
β βββ train_B | |
β β βββ 000000.png | |
β β βββ 000001.png | |
β β βββ ... | |
β βββ train_prompts.json | |
| | |
| βββ test_A | |
β β βββ 000000.png | |
β β βββ 000001.png | |
β β βββ ... | |
β βββ test_B | |
β β βββ 000000.png | |
β β βββ 000001.png | |
β β βββ ... | |
β βββ test_prompts.json | |
``` | |
### Step 2. Train the Model | |
- Initialize the `accelerate` environment with the following command: | |
``` | |
accelerate config | |
``` | |
- Run the following command to train the model. | |
``` | |
accelerate launch src/train_pix2pix_turbo.py \ | |
--pretrained_model_name_or_path="stabilityai/sd-turbo" \ | |
--output_dir="output/pix2pix_turbo/fill50k" \ | |
--dataset_folder="data/my_fill50k" \ | |
--resolution=512 \ | |
--train_batch_size=2 \ | |
--enable_xformers_memory_efficient_attention --viz_freq 25 \ | |
--track_val_fid \ | |
--report_to "wandb" --tracker_project_name "pix2pix_turbo_fill50k" | |
``` | |
- Additional optional flags: | |
- `--track_val_fid`: Track FID score on the validation set using the [Clean-FID](https://github.com/GaParmar/clean-fid) implementation. | |
- `--enable_xformers_memory_efficient_attention`: Enable memory-efficient attention in the model. | |
- `--viz_freq`: Frequency of visualizing the results during training. | |
### Step 3. Monitor the training progress | |
- You can monitor the training progress using the [Weights & Biases](https://wandb.ai/site) dashboard. | |
- The training script will visualizing the training batch, the training losses, and validation set L2, LPIPS, and FID scores (if specified). | |
<div> | |
<p align="center"> | |
<img src='../assets/examples/training_evaluation.png' align="center" width=800px> | |
</p> | |
</div> | |
- The model checkpoints will be saved in the `<output_dir>/checkpoints` directory. | |
- Screenshots of the training progress are shown below: | |
- Step 0: | |
<div> | |
<p align="center"> | |
<img src='../assets/examples/training_step_0.png' align="center" width=800px> | |
</p> | |
</div> | |
- Step 500: | |
<div> | |
<p align="center"> | |
<img src='../assets/examples/training_step_500.png' align="center" width=800px> | |
</p> | |
</div> | |
- Step 6000: | |
<div> | |
<p align="center"> | |
<img src='../assets/examples/training_step_6000.png' align="center" width=800px> | |
</p> | |
</div> | |
### Step 4. Running Inference with the trained models | |
- You can run inference using the trained model using the following command: | |
``` | |
python src/inference_paired.py --model_path "output/pix2pix_turbo/fill50k/checkpoints/model_6001.pkl" \ | |
--input_image "data/my_fill50k/test_A/40000.png" \ | |
--prompt "violet circle with orange background" \ | |
--output_dir "outputs" | |
``` | |
- The above command should generate the following output: | |
<table> | |
<tr> | |
<th>Model Input</th> | |
<th>Model Output</th> | |
</tr> | |
<tr> | |
<td><img src='../assets/examples/circles_inference_input.png' width="200px"></td> | |
<td><img src='../assets/examples/circles_inference_output.png' width="200px"></td> | |
</tr> | |
</table> | |