JasonSmithSO's picture
Upload 777 files
0034848 verified
from __future__ import absolute_import, division
import math
import numbers
import random
import warnings
from enum import IntEnum
from types import LambdaType
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import cv2
import numpy as np
from scipy import special
from scipy.ndimage import gaussian_filter
from custom_albumentations import random_utils
from custom_albumentations.augmentations.blur.functional import blur
from custom_albumentations.augmentations.utils import (
get_num_channels,
is_grayscale_image,
is_rgb_image,
)
from ..core.transforms_interface import (
DualTransform,
ImageOnlyTransform,
NoOp,
ScaleFloatType,
to_tuple,
)
from ..core.utils import format_args
from . import functional as F
__all__ = [
"Normalize",
"RandomGamma",
"RandomGridShuffle",
"HueSaturationValue",
"RGBShift",
"RandomBrightness",
"RandomContrast",
"GaussNoise",
"CLAHE",
"ChannelShuffle",
"InvertImg",
"ToGray",
"ToRGB",
"ToSepia",
"JpegCompression",
"ImageCompression",
"ToFloat",
"FromFloat",
"RandomBrightnessContrast",
"RandomSnow",
"RandomGravel",
"RandomRain",
"RandomFog",
"RandomSunFlare",
"RandomShadow",
"RandomToneCurve",
"Lambda",
"ISONoise",
"Solarize",
"Equalize",
"Posterize",
"Downscale",
"MultiplicativeNoise",
"FancyPCA",
"ColorJitter",
"Sharpen",
"Emboss",
"Superpixels",
"TemplateTransform",
"RingingOvershoot",
"UnsharpMask",
"PixelDropout",
"Spatter",
]
class RandomGridShuffle(DualTransform):
"""
Random shuffle grid's cells on image.
Args:
grid ((int, int)): size of grid for splitting image.
Targets:
image, mask, keypoints
Image types:
uint8, float32
"""
def __init__(self, grid: Tuple[int, int] = (3, 3), always_apply: bool = False, p: float = 0.5):
super(RandomGridShuffle, self).__init__(always_apply, p)
self.grid = grid
def apply(self, img: np.ndarray, tiles: np.ndarray = np.array(None), **params):
return F.swap_tiles_on_image(img, tiles)
def apply_to_mask(self, img: np.ndarray, tiles: np.ndarray = np.array(None), **params):
return F.swap_tiles_on_image(img, tiles)
def apply_to_keypoint(
self, keypoint: Tuple[float, ...], tiles: np.ndarray = np.array(None), rows: int = 0, cols: int = 0, **params
):
for (
current_left_up_corner_row,
current_left_up_corner_col,
old_left_up_corner_row,
old_left_up_corner_col,
height_tile,
width_tile,
) in tiles:
x, y = keypoint[:2]
if (old_left_up_corner_row <= y < (old_left_up_corner_row + height_tile)) and (
old_left_up_corner_col <= x < (old_left_up_corner_col + width_tile)
):
x = x - old_left_up_corner_col + current_left_up_corner_col
y = y - old_left_up_corner_row + current_left_up_corner_row
keypoint = (x, y) + tuple(keypoint[2:])
break
return keypoint
def get_params_dependent_on_targets(self, params):
height, width = params["image"].shape[:2]
n, m = self.grid
if n <= 0 or m <= 0:
raise ValueError("Grid's values must be positive. Current grid [%s, %s]" % (n, m))
if n > height // 2 or m > width // 2:
raise ValueError("Incorrect size cell of grid. Just shuffle pixels of image")
height_split = np.linspace(0, height, n + 1, dtype=np.int32)
width_split = np.linspace(0, width, m + 1, dtype=np.int32)
height_matrix, width_matrix = np.meshgrid(height_split, width_split, indexing="ij")
index_height_matrix = height_matrix[:-1, :-1]
index_width_matrix = width_matrix[:-1, :-1]
shifted_index_height_matrix = height_matrix[1:, 1:]
shifted_index_width_matrix = width_matrix[1:, 1:]
height_tile_sizes = shifted_index_height_matrix - index_height_matrix
width_tile_sizes = shifted_index_width_matrix - index_width_matrix
tiles_sizes = np.stack((height_tile_sizes, width_tile_sizes), axis=2)
index_matrix = np.indices((n, m))
new_index_matrix = np.stack(index_matrix, axis=2)
for bbox_size in np.unique(tiles_sizes.reshape(-1, 2), axis=0):
eq_mat = np.all(tiles_sizes == bbox_size, axis=2)
new_index_matrix[eq_mat] = random_utils.permutation(new_index_matrix[eq_mat])
new_index_matrix = np.split(new_index_matrix, 2, axis=2)
old_x = index_height_matrix[new_index_matrix[0], new_index_matrix[1]].reshape(-1)
old_y = index_width_matrix[new_index_matrix[0], new_index_matrix[1]].reshape(-1)
shift_x = height_tile_sizes.reshape(-1)
shift_y = width_tile_sizes.reshape(-1)
curr_x = index_height_matrix.reshape(-1)
curr_y = index_width_matrix.reshape(-1)
tiles = np.stack([curr_x, curr_y, old_x, old_y, shift_x, shift_y], axis=1)
return {"tiles": tiles}
@property
def targets_as_params(self):
return ["image"]
def get_transform_init_args_names(self):
return ("grid",)
class Normalize(ImageOnlyTransform):
"""Normalization is applied by the formula: `img = (img - mean * max_pixel_value) / (std * max_pixel_value)`
Args:
mean (float, list of float): mean values
std (float, list of float): std values
max_pixel_value (float): maximum possible pixel value
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
max_pixel_value=255.0,
always_apply=False,
p=1.0,
):
super(Normalize, self).__init__(always_apply, p)
self.mean = mean
self.std = std
self.max_pixel_value = max_pixel_value
def apply(self, image, **params):
return F.normalize(image, self.mean, self.std, self.max_pixel_value)
def get_transform_init_args_names(self):
return ("mean", "std", "max_pixel_value")
class ImageCompression(ImageOnlyTransform):
"""Decreases image quality by Jpeg, WebP compression of an image.
Args:
quality_lower (float): lower bound on the image quality.
Should be in [0, 100] range for jpeg and [1, 100] for webp.
quality_upper (float): upper bound on the image quality.
Should be in [0, 100] range for jpeg and [1, 100] for webp.
compression_type (ImageCompressionType): should be ImageCompressionType.JPEG or ImageCompressionType.WEBP.
Default: ImageCompressionType.JPEG
Targets:
image
Image types:
uint8, float32
"""
class ImageCompressionType(IntEnum):
JPEG = 0
WEBP = 1
def __init__(
self,
quality_lower=99,
quality_upper=100,
compression_type=ImageCompressionType.JPEG,
always_apply=False,
p=0.5,
):
super(ImageCompression, self).__init__(always_apply, p)
self.compression_type = ImageCompression.ImageCompressionType(compression_type)
low_thresh_quality_assert = 0
if self.compression_type == ImageCompression.ImageCompressionType.WEBP:
low_thresh_quality_assert = 1
if not low_thresh_quality_assert <= quality_lower <= 100:
raise ValueError("Invalid quality_lower. Got: {}".format(quality_lower))
if not low_thresh_quality_assert <= quality_upper <= 100:
raise ValueError("Invalid quality_upper. Got: {}".format(quality_upper))
self.quality_lower = quality_lower
self.quality_upper = quality_upper
def apply(self, image, quality=100, image_type=".jpg", **params):
if not image.ndim == 2 and image.shape[-1] not in (1, 3, 4):
raise TypeError("ImageCompression transformation expects 1, 3 or 4 channel images.")
return F.image_compression(image, quality, image_type)
def get_params(self):
image_type = ".jpg"
if self.compression_type == ImageCompression.ImageCompressionType.WEBP:
image_type = ".webp"
return {
"quality": random.randint(self.quality_lower, self.quality_upper),
"image_type": image_type,
}
def get_transform_init_args(self):
return {
"quality_lower": self.quality_lower,
"quality_upper": self.quality_upper,
"compression_type": self.compression_type.value,
}
class JpegCompression(ImageCompression):
"""Decreases image quality by Jpeg compression of an image.
Args:
quality_lower (float): lower bound on the jpeg quality. Should be in [0, 100] range
quality_upper (float): upper bound on the jpeg quality. Should be in [0, 100] range
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, quality_lower=99, quality_upper=100, always_apply=False, p=0.5):
super(JpegCompression, self).__init__(
quality_lower=quality_lower,
quality_upper=quality_upper,
compression_type=ImageCompression.ImageCompressionType.JPEG,
always_apply=always_apply,
p=p,
)
warnings.warn(
f"{self.__class__.__name__} has been deprecated. Please use ImageCompression",
FutureWarning,
)
def get_transform_init_args(self):
return {
"quality_lower": self.quality_lower,
"quality_upper": self.quality_upper,
}
class RandomSnow(ImageOnlyTransform):
"""Bleach out some pixel values simulating snow.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
snow_point_lower (float): lower_bond of the amount of snow. Should be in [0, 1] range
snow_point_upper (float): upper_bond of the amount of snow. Should be in [0, 1] range
brightness_coeff (float): larger number will lead to a more snow on the image. Should be >= 0
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
snow_point_lower=0.1,
snow_point_upper=0.3,
brightness_coeff=2.5,
always_apply=False,
p=0.5,
):
super(RandomSnow, self).__init__(always_apply, p)
if not 0 <= snow_point_lower <= snow_point_upper <= 1:
raise ValueError(
"Invalid combination of snow_point_lower and snow_point_upper. Got: {}".format(
(snow_point_lower, snow_point_upper)
)
)
if brightness_coeff < 0:
raise ValueError("brightness_coeff must be greater than 0. Got: {}".format(brightness_coeff))
self.snow_point_lower = snow_point_lower
self.snow_point_upper = snow_point_upper
self.brightness_coeff = brightness_coeff
def apply(self, image, snow_point=0.1, **params):
return F.add_snow(image, snow_point, self.brightness_coeff)
def get_params(self):
return {"snow_point": random.uniform(self.snow_point_lower, self.snow_point_upper)}
def get_transform_init_args_names(self):
return ("snow_point_lower", "snow_point_upper", "brightness_coeff")
class RandomGravel(ImageOnlyTransform):
"""Add gravels.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
gravel_roi (float, float, float, float): (top-left x, top-left y,
bottom-right x, bottom right y). Should be in [0, 1] range
number_of_patches (int): no. of gravel patches required
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
gravel_roi: tuple = (0.1, 0.4, 0.9, 0.9),
number_of_patches: int = 2,
always_apply: bool = False,
p: float = 0.5,
):
super(RandomGravel, self).__init__(always_apply, p)
(gravel_lower_x, gravel_lower_y, gravel_upper_x, gravel_upper_y) = gravel_roi
if not 0 <= gravel_lower_x < gravel_upper_x <= 1 or not 0 <= gravel_lower_y < gravel_upper_y <= 1:
raise ValueError("Invalid gravel_roi. Got: %s." % gravel_roi)
if number_of_patches < 1:
raise ValueError("Invalid gravel number_of_patches. Got: %s." % number_of_patches)
self.gravel_roi = gravel_roi
self.number_of_patches = number_of_patches
def generate_gravel_patch(self, rectangular_roi):
x1, y1, x2, y2 = rectangular_roi
gravels = []
area = abs((x2 - x1) * (y2 - y1))
count = area // 10
gravels = np.empty([count, 2], dtype=np.int64)
gravels[:, 0] = random_utils.randint(x1, x2, count)
gravels[:, 1] = random_utils.randint(y1, y2, count)
return gravels
def apply(self, image, gravels_infos=(), **params):
return F.add_gravel(image, gravels_infos)
@property
def targets_as_params(self):
return ["image"]
def get_params_dependent_on_targets(self, params):
img = params["image"]
height, width = img.shape[:2]
x_min, y_min, x_max, y_max = self.gravel_roi
x_min = int(x_min * width)
x_max = int(x_max * width)
y_min = int(y_min * height)
y_max = int(y_max * height)
max_height = 200
max_width = 30
rectangular_rois = np.zeros([self.number_of_patches, 4], dtype=np.int64)
xx1 = random_utils.randint(x_min + 1, x_max, self.number_of_patches) # xmax
xx2 = random_utils.randint(x_min, xx1) # xmin
yy1 = random_utils.randint(y_min + 1, y_max, self.number_of_patches) # ymax
yy2 = random_utils.randint(y_min, yy1) # ymin
rectangular_rois[:, 0] = xx2
rectangular_rois[:, 1] = yy2
rectangular_rois[:, 2] = [min(tup) for tup in zip(xx1, xx2 + max_height)]
rectangular_rois[:, 3] = [min(tup) for tup in zip(yy1, yy2 + max_width)]
minx = []
maxx = []
miny = []
maxy = []
val = []
for roi in rectangular_rois:
gravels = self.generate_gravel_patch(roi)
x = gravels[:, 0]
y = gravels[:, 1]
r = random_utils.randint(1, 4, len(gravels))
sat = random_utils.randint(0, 255, len(gravels))
miny.append(np.maximum(y - r, 0))
maxy.append(np.minimum(y + r, y))
minx.append(np.maximum(x - r, 0))
maxx.append(np.minimum(x + r, x))
val.append(sat)
return {
"gravels_infos": np.stack(
[
np.concatenate(miny),
np.concatenate(maxy),
np.concatenate(minx),
np.concatenate(maxx),
np.concatenate(val),
],
1,
)
}
def get_transform_init_args_names(self):
return {"gravel_roi": self.gravel_roi, "number_of_patches": self.number_of_patches}
class RandomRain(ImageOnlyTransform):
"""Adds rain effects.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
slant_lower: should be in range [-20, 20].
slant_upper: should be in range [-20, 20].
drop_length: should be in range [0, 100].
drop_width: should be in range [1, 5].
drop_color (list of (r, g, b)): rain lines color.
blur_value (int): rainy view are blurry
brightness_coefficient (float): rainy days are usually shady. Should be in range [0, 1].
rain_type: One of [None, "drizzle", "heavy", "torrential"]
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
slant_lower=-10,
slant_upper=10,
drop_length=20,
drop_width=1,
drop_color=(200, 200, 200),
blur_value=7,
brightness_coefficient=0.7,
rain_type=None,
always_apply=False,
p=0.5,
):
super(RandomRain, self).__init__(always_apply, p)
if rain_type not in ["drizzle", "heavy", "torrential", None]:
raise ValueError(
"raint_type must be one of ({}). Got: {}".format(["drizzle", "heavy", "torrential", None], rain_type)
)
if not -20 <= slant_lower <= slant_upper <= 20:
raise ValueError(
"Invalid combination of slant_lower and slant_upper. Got: {}".format((slant_lower, slant_upper))
)
if not 1 <= drop_width <= 5:
raise ValueError("drop_width must be in range [1, 5]. Got: {}".format(drop_width))
if not 0 <= drop_length <= 100:
raise ValueError("drop_length must be in range [0, 100]. Got: {}".format(drop_length))
if not 0 <= brightness_coefficient <= 1:
raise ValueError("brightness_coefficient must be in range [0, 1]. Got: {}".format(brightness_coefficient))
self.slant_lower = slant_lower
self.slant_upper = slant_upper
self.drop_length = drop_length
self.drop_width = drop_width
self.drop_color = drop_color
self.blur_value = blur_value
self.brightness_coefficient = brightness_coefficient
self.rain_type = rain_type
def apply(self, image, slant=10, drop_length=20, rain_drops=(), **params):
return F.add_rain(
image,
slant,
drop_length,
self.drop_width,
self.drop_color,
self.blur_value,
self.brightness_coefficient,
rain_drops,
)
@property
def targets_as_params(self):
return ["image"]
def get_params_dependent_on_targets(self, params):
img = params["image"]
slant = int(random.uniform(self.slant_lower, self.slant_upper))
height, width = img.shape[:2]
area = height * width
if self.rain_type == "drizzle":
num_drops = area // 770
drop_length = 10
elif self.rain_type == "heavy":
num_drops = width * height // 600
drop_length = 30
elif self.rain_type == "torrential":
num_drops = area // 500
drop_length = 60
else:
drop_length = self.drop_length
num_drops = area // 600
rain_drops = []
for _i in range(num_drops): # If You want heavy rain, try increasing this
if slant < 0:
x = random.randint(slant, width)
else:
x = random.randint(0, width - slant)
y = random.randint(0, height - drop_length)
rain_drops.append((x, y))
return {"drop_length": drop_length, "slant": slant, "rain_drops": rain_drops}
def get_transform_init_args_names(self):
return (
"slant_lower",
"slant_upper",
"drop_length",
"drop_width",
"drop_color",
"blur_value",
"brightness_coefficient",
"rain_type",
)
class RandomFog(ImageOnlyTransform):
"""Simulates fog for the image
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
fog_coef_lower (float): lower limit for fog intensity coefficient. Should be in [0, 1] range.
fog_coef_upper (float): upper limit for fog intensity coefficient. Should be in [0, 1] range.
alpha_coef (float): transparency of the fog circles. Should be in [0, 1] range.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
fog_coef_lower=0.3,
fog_coef_upper=1,
alpha_coef=0.08,
always_apply=False,
p=0.5,
):
super(RandomFog, self).__init__(always_apply, p)
if not 0 <= fog_coef_lower <= fog_coef_upper <= 1:
raise ValueError(
"Invalid combination if fog_coef_lower and fog_coef_upper. Got: {}".format(
(fog_coef_lower, fog_coef_upper)
)
)
if not 0 <= alpha_coef <= 1:
raise ValueError("alpha_coef must be in range [0, 1]. Got: {}".format(alpha_coef))
self.fog_coef_lower = fog_coef_lower
self.fog_coef_upper = fog_coef_upper
self.alpha_coef = alpha_coef
def apply(self, image, fog_coef=0.1, haze_list=(), **params):
return F.add_fog(image, fog_coef, self.alpha_coef, haze_list)
@property
def targets_as_params(self):
return ["image"]
def get_params_dependent_on_targets(self, params):
img = params["image"]
fog_coef = random.uniform(self.fog_coef_lower, self.fog_coef_upper)
height, width = imshape = img.shape[:2]
hw = max(1, int(width // 3 * fog_coef))
haze_list = []
midx = width // 2 - 2 * hw
midy = height // 2 - hw
index = 1
while midx > -hw or midy > -hw:
for _i in range(hw // 10 * index):
x = random.randint(midx, width - midx - hw)
y = random.randint(midy, height - midy - hw)
haze_list.append((x, y))
midx -= 3 * hw * width // sum(imshape)
midy -= 3 * hw * height // sum(imshape)
index += 1
return {"haze_list": haze_list, "fog_coef": fog_coef}
def get_transform_init_args_names(self):
return ("fog_coef_lower", "fog_coef_upper", "alpha_coef")
class RandomSunFlare(ImageOnlyTransform):
"""Simulates Sun Flare for the image
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
flare_roi (float, float, float, float): region of the image where flare will
appear (x_min, y_min, x_max, y_max). All values should be in range [0, 1].
angle_lower (float): should be in range [0, `angle_upper`].
angle_upper (float): should be in range [`angle_lower`, 1].
num_flare_circles_lower (int): lower limit for the number of flare circles.
Should be in range [0, `num_flare_circles_upper`].
num_flare_circles_upper (int): upper limit for the number of flare circles.
Should be in range [`num_flare_circles_lower`, inf].
src_radius (int):
src_color ((int, int, int)): color of the flare
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
flare_roi=(0, 0, 1, 0.5),
angle_lower=0,
angle_upper=1,
num_flare_circles_lower=6,
num_flare_circles_upper=10,
src_radius=400,
src_color=(255, 255, 255),
always_apply=False,
p=0.5,
):
super(RandomSunFlare, self).__init__(always_apply, p)
(
flare_center_lower_x,
flare_center_lower_y,
flare_center_upper_x,
flare_center_upper_y,
) = flare_roi
if (
not 0 <= flare_center_lower_x < flare_center_upper_x <= 1
or not 0 <= flare_center_lower_y < flare_center_upper_y <= 1
):
raise ValueError("Invalid flare_roi. Got: {}".format(flare_roi))
if not 0 <= angle_lower < angle_upper <= 1:
raise ValueError(
"Invalid combination of angle_lower nad angle_upper. Got: {}".format((angle_lower, angle_upper))
)
if not 0 <= num_flare_circles_lower < num_flare_circles_upper:
raise ValueError(
"Invalid combination of num_flare_circles_lower nad num_flare_circles_upper. Got: {}".format(
(num_flare_circles_lower, num_flare_circles_upper)
)
)
self.flare_center_lower_x = flare_center_lower_x
self.flare_center_upper_x = flare_center_upper_x
self.flare_center_lower_y = flare_center_lower_y
self.flare_center_upper_y = flare_center_upper_y
self.angle_lower = angle_lower
self.angle_upper = angle_upper
self.num_flare_circles_lower = num_flare_circles_lower
self.num_flare_circles_upper = num_flare_circles_upper
self.src_radius = src_radius
self.src_color = src_color
def apply(self, image, flare_center_x=0.5, flare_center_y=0.5, circles=(), **params):
return F.add_sun_flare(
image,
flare_center_x,
flare_center_y,
self.src_radius,
self.src_color,
circles,
)
@property
def targets_as_params(self):
return ["image"]
def get_params_dependent_on_targets(self, params):
img = params["image"]
height, width = img.shape[:2]
angle = 2 * math.pi * random.uniform(self.angle_lower, self.angle_upper)
flare_center_x = random.uniform(self.flare_center_lower_x, self.flare_center_upper_x)
flare_center_y = random.uniform(self.flare_center_lower_y, self.flare_center_upper_y)
flare_center_x = int(width * flare_center_x)
flare_center_y = int(height * flare_center_y)
num_circles = random.randint(self.num_flare_circles_lower, self.num_flare_circles_upper)
circles = []
x = []
y = []
def line(t):
return (flare_center_x + t * math.cos(angle), flare_center_y + t * math.sin(angle))
for t_val in range(-flare_center_x, width - flare_center_x, 10):
rand_x, rand_y = line(t_val)
x.append(rand_x)
y.append(rand_y)
for _i in range(num_circles):
alpha = random.uniform(0.05, 0.2)
r = random.randint(0, len(x) - 1)
rad = random.randint(1, max(height // 100 - 2, 2))
r_color = random.randint(max(self.src_color[0] - 50, 0), self.src_color[0])
g_color = random.randint(max(self.src_color[1] - 50, 0), self.src_color[1])
b_color = random.randint(max(self.src_color[2] - 50, 0), self.src_color[2])
circles += [
(
alpha,
(int(x[r]), int(y[r])),
pow(rad, 3),
(r_color, g_color, b_color),
)
]
return {
"circles": circles,
"flare_center_x": flare_center_x,
"flare_center_y": flare_center_y,
}
def get_transform_init_args(self):
return {
"flare_roi": (
self.flare_center_lower_x,
self.flare_center_lower_y,
self.flare_center_upper_x,
self.flare_center_upper_y,
),
"angle_lower": self.angle_lower,
"angle_upper": self.angle_upper,
"num_flare_circles_lower": self.num_flare_circles_lower,
"num_flare_circles_upper": self.num_flare_circles_upper,
"src_radius": self.src_radius,
"src_color": self.src_color,
}
class RandomShadow(ImageOnlyTransform):
"""Simulates shadows for the image
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
shadow_roi (float, float, float, float): region of the image where shadows
will appear (x_min, y_min, x_max, y_max). All values should be in range [0, 1].
num_shadows_lower (int): Lower limit for the possible number of shadows.
Should be in range [0, `num_shadows_upper`].
num_shadows_upper (int): Lower limit for the possible number of shadows.
Should be in range [`num_shadows_lower`, inf].
shadow_dimension (int): number of edges in the shadow polygons
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
shadow_roi=(0, 0.5, 1, 1),
num_shadows_lower=1,
num_shadows_upper=2,
shadow_dimension=5,
always_apply=False,
p=0.5,
):
super(RandomShadow, self).__init__(always_apply, p)
(shadow_lower_x, shadow_lower_y, shadow_upper_x, shadow_upper_y) = shadow_roi
if not 0 <= shadow_lower_x <= shadow_upper_x <= 1 or not 0 <= shadow_lower_y <= shadow_upper_y <= 1:
raise ValueError("Invalid shadow_roi. Got: {}".format(shadow_roi))
if not 0 <= num_shadows_lower <= num_shadows_upper:
raise ValueError(
"Invalid combination of num_shadows_lower nad num_shadows_upper. Got: {}".format(
(num_shadows_lower, num_shadows_upper)
)
)
self.shadow_roi = shadow_roi
self.num_shadows_lower = num_shadows_lower
self.num_shadows_upper = num_shadows_upper
self.shadow_dimension = shadow_dimension
def apply(self, image, vertices_list=(), **params):
return F.add_shadow(image, vertices_list)
@property
def targets_as_params(self):
return ["image"]
def get_params_dependent_on_targets(self, params):
img = params["image"]
height, width = img.shape[:2]
num_shadows = random.randint(self.num_shadows_lower, self.num_shadows_upper)
x_min, y_min, x_max, y_max = self.shadow_roi
x_min = int(x_min * width)
x_max = int(x_max * width)
y_min = int(y_min * height)
y_max = int(y_max * height)
vertices_list = []
for _index in range(num_shadows):
vertex = []
for _dimension in range(self.shadow_dimension):
vertex.append((random.randint(x_min, x_max), random.randint(y_min, y_max)))
vertices = np.array([vertex], dtype=np.int32)
vertices_list.append(vertices)
return {"vertices_list": vertices_list}
def get_transform_init_args_names(self):
return (
"shadow_roi",
"num_shadows_lower",
"num_shadows_upper",
"shadow_dimension",
)
class RandomToneCurve(ImageOnlyTransform):
"""Randomly change the relationship between bright and dark areas of the image by manipulating its tone curve.
Args:
scale (float): standard deviation of the normal distribution.
Used to sample random distances to move two control points that modify the image's curve.
Values should be in range [0, 1]. Default: 0.1
Targets:
image
Image types:
uint8
"""
def __init__(
self,
scale=0.1,
always_apply=False,
p=0.5,
):
super(RandomToneCurve, self).__init__(always_apply, p)
self.scale = scale
def apply(self, image, low_y, high_y, **params):
return F.move_tone_curve(image, low_y, high_y)
def get_params(self):
return {
"low_y": np.clip(random_utils.normal(loc=0.25, scale=self.scale), 0, 1),
"high_y": np.clip(random_utils.normal(loc=0.75, scale=self.scale), 0, 1),
}
def get_transform_init_args_names(self):
return ("scale",)
class HueSaturationValue(ImageOnlyTransform):
"""Randomly change hue, saturation and value of the input image.
Args:
hue_shift_limit ((int, int) or int): range for changing hue. If hue_shift_limit is a single int, the range
will be (-hue_shift_limit, hue_shift_limit). Default: (-20, 20).
sat_shift_limit ((int, int) or int): range for changing saturation. If sat_shift_limit is a single int,
the range will be (-sat_shift_limit, sat_shift_limit). Default: (-30, 30).
val_shift_limit ((int, int) or int): range for changing value. If val_shift_limit is a single int, the range
will be (-val_shift_limit, val_shift_limit). Default: (-20, 20).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
hue_shift_limit=20,
sat_shift_limit=30,
val_shift_limit=20,
always_apply=False,
p=0.5,
):
super(HueSaturationValue, self).__init__(always_apply, p)
self.hue_shift_limit = to_tuple(hue_shift_limit)
self.sat_shift_limit = to_tuple(sat_shift_limit)
self.val_shift_limit = to_tuple(val_shift_limit)
def apply(self, image, hue_shift=0, sat_shift=0, val_shift=0, **params):
if not is_rgb_image(image) and not is_grayscale_image(image):
raise TypeError("HueSaturationValue transformation expects 1-channel or 3-channel images.")
return F.shift_hsv(image, hue_shift, sat_shift, val_shift)
def get_params(self):
return {
"hue_shift": random.uniform(self.hue_shift_limit[0], self.hue_shift_limit[1]),
"sat_shift": random.uniform(self.sat_shift_limit[0], self.sat_shift_limit[1]),
"val_shift": random.uniform(self.val_shift_limit[0], self.val_shift_limit[1]),
}
def get_transform_init_args_names(self):
return ("hue_shift_limit", "sat_shift_limit", "val_shift_limit")
class Solarize(ImageOnlyTransform):
"""Invert all pixel values above a threshold.
Args:
threshold ((int, int) or int, or (float, float) or float): range for solarizing threshold.
If threshold is a single value, the range will be [threshold, threshold]. Default: 128.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
any
"""
def __init__(self, threshold=128, always_apply=False, p=0.5):
super(Solarize, self).__init__(always_apply, p)
if isinstance(threshold, (int, float)):
self.threshold = to_tuple(threshold, low=threshold)
else:
self.threshold = to_tuple(threshold, low=0)
def apply(self, image, threshold=0, **params):
return F.solarize(image, threshold)
def get_params(self):
return {"threshold": random.uniform(self.threshold[0], self.threshold[1])}
def get_transform_init_args_names(self):
return ("threshold",)
class Posterize(ImageOnlyTransform):
"""Reduce the number of bits for each color channel.
Args:
num_bits ((int, int) or int,
or list of ints [r, g, b],
or list of ints [[r1, r1], [g1, g2], [b1, b2]]): number of high bits.
If num_bits is a single value, the range will be [num_bits, num_bits].
Must be in range [0, 8]. Default: 4.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8
"""
def __init__(self, num_bits=4, always_apply=False, p=0.5):
super(Posterize, self).__init__(always_apply, p)
if isinstance(num_bits, (list, tuple)):
if len(num_bits) == 3:
self.num_bits = [to_tuple(i, 0) for i in num_bits]
else:
self.num_bits = to_tuple(num_bits, 0)
else:
self.num_bits = to_tuple(num_bits, num_bits)
def apply(self, image, num_bits=1, **params):
return F.posterize(image, num_bits)
def get_params(self):
if len(self.num_bits) == 3:
return {"num_bits": [random.randint(i[0], i[1]) for i in self.num_bits]}
return {"num_bits": random.randint(self.num_bits[0], self.num_bits[1])}
def get_transform_init_args_names(self):
return ("num_bits",)
class Equalize(ImageOnlyTransform):
"""Equalize the image histogram.
Args:
mode (str): {'cv', 'pil'}. Use OpenCV or Pillow equalization method.
by_channels (bool): If True, use equalization by channels separately,
else convert image to YCbCr representation and use equalization by `Y` channel.
mask (np.ndarray, callable): If given, only the pixels selected by
the mask are included in the analysis. Maybe 1 channel or 3 channel array or callable.
Function signature must include `image` argument.
mask_params (list of str): Params for mask function.
Targets:
image
Image types:
uint8
"""
def __init__(
self,
mode="cv",
by_channels=True,
mask=None,
mask_params=(),
always_apply=False,
p=0.5,
):
modes = ["cv", "pil"]
if mode not in modes:
raise ValueError("Unsupported equalization mode. Supports: {}. " "Got: {}".format(modes, mode))
super(Equalize, self).__init__(always_apply, p)
self.mode = mode
self.by_channels = by_channels
self.mask = mask
self.mask_params = mask_params
def apply(self, image, mask=None, **params):
return F.equalize(image, mode=self.mode, by_channels=self.by_channels, mask=mask)
def get_params_dependent_on_targets(self, params):
if not callable(self.mask):
return {"mask": self.mask}
return {"mask": self.mask(**params)}
@property
def targets_as_params(self):
return ["image"] + list(self.mask_params)
def get_transform_init_args_names(self):
return ("mode", "by_channels")
class RGBShift(ImageOnlyTransform):
"""Randomly shift values for each channel of the input RGB image.
Args:
r_shift_limit ((int, int) or int): range for changing values for the red channel. If r_shift_limit is a single
int, the range will be (-r_shift_limit, r_shift_limit). Default: (-20, 20).
g_shift_limit ((int, int) or int): range for changing values for the green channel. If g_shift_limit is a
single int, the range will be (-g_shift_limit, g_shift_limit). Default: (-20, 20).
b_shift_limit ((int, int) or int): range for changing values for the blue channel. If b_shift_limit is a single
int, the range will be (-b_shift_limit, b_shift_limit). Default: (-20, 20).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
r_shift_limit=20,
g_shift_limit=20,
b_shift_limit=20,
always_apply=False,
p=0.5,
):
super(RGBShift, self).__init__(always_apply, p)
self.r_shift_limit = to_tuple(r_shift_limit)
self.g_shift_limit = to_tuple(g_shift_limit)
self.b_shift_limit = to_tuple(b_shift_limit)
def apply(self, image, r_shift=0, g_shift=0, b_shift=0, **params):
if not is_rgb_image(image):
raise TypeError("RGBShift transformation expects 3-channel images.")
return F.shift_rgb(image, r_shift, g_shift, b_shift)
def get_params(self):
return {
"r_shift": random.uniform(self.r_shift_limit[0], self.r_shift_limit[1]),
"g_shift": random.uniform(self.g_shift_limit[0], self.g_shift_limit[1]),
"b_shift": random.uniform(self.b_shift_limit[0], self.b_shift_limit[1]),
}
def get_transform_init_args_names(self):
return ("r_shift_limit", "g_shift_limit", "b_shift_limit")
class RandomBrightnessContrast(ImageOnlyTransform):
"""Randomly change brightness and contrast of the input image.
Args:
brightness_limit ((float, float) or float): factor range for changing brightness.
If limit is a single float, the range will be (-limit, limit). Default: (-0.2, 0.2).
contrast_limit ((float, float) or float): factor range for changing contrast.
If limit is a single float, the range will be (-limit, limit). Default: (-0.2, 0.2).
brightness_by_max (Boolean): If True adjust contrast by image dtype maximum,
else adjust contrast by image mean.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
brightness_limit=0.2,
contrast_limit=0.2,
brightness_by_max=True,
always_apply=False,
p=0.5,
):
super(RandomBrightnessContrast, self).__init__(always_apply, p)
self.brightness_limit = to_tuple(brightness_limit)
self.contrast_limit = to_tuple(contrast_limit)
self.brightness_by_max = brightness_by_max
def apply(self, img, alpha=1.0, beta=0.0, **params):
return F.brightness_contrast_adjust(img, alpha, beta, self.brightness_by_max)
def get_params(self):
return {
"alpha": 1.0 + random.uniform(self.contrast_limit[0], self.contrast_limit[1]),
"beta": 0.0 + random.uniform(self.brightness_limit[0], self.brightness_limit[1]),
}
def get_transform_init_args_names(self):
return ("brightness_limit", "contrast_limit", "brightness_by_max")
class RandomBrightness(RandomBrightnessContrast):
"""Randomly change brightness of the input image.
Args:
limit ((float, float) or float): factor range for changing brightness.
If limit is a single float, the range will be (-limit, limit). Default: (-0.2, 0.2).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, limit=0.2, always_apply=False, p=0.5):
super(RandomBrightness, self).__init__(brightness_limit=limit, contrast_limit=0, always_apply=always_apply, p=p)
warnings.warn(
"This class has been deprecated. Please use RandomBrightnessContrast",
FutureWarning,
)
def get_transform_init_args(self):
return {"limit": self.brightness_limit}
class RandomContrast(RandomBrightnessContrast):
"""Randomly change contrast of the input image.
Args:
limit ((float, float) or float): factor range for changing contrast.
If limit is a single float, the range will be (-limit, limit). Default: (-0.2, 0.2).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, limit=0.2, always_apply=False, p=0.5):
super(RandomContrast, self).__init__(brightness_limit=0, contrast_limit=limit, always_apply=always_apply, p=p)
warnings.warn(
f"{self.__class__.__name__} has been deprecated. Please use RandomBrightnessContrast",
FutureWarning,
)
def get_transform_init_args(self):
return {"limit": self.contrast_limit}
class GaussNoise(ImageOnlyTransform):
"""Apply gaussian noise to the input image.
Args:
var_limit ((float, float) or float): variance range for noise. If var_limit is a single float, the range
will be (0, var_limit). Default: (10.0, 50.0).
mean (float): mean of the noise. Default: 0
per_channel (bool): if set to True, noise will be sampled for each channel independently.
Otherwise, the noise will be sampled once for all channels. Default: True
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, var_limit=(10.0, 50.0), mean=0, per_channel=True, always_apply=False, p=0.5):
super(GaussNoise, self).__init__(always_apply, p)
if isinstance(var_limit, (tuple, list)):
if var_limit[0] < 0:
raise ValueError("Lower var_limit should be non negative.")
if var_limit[1] < 0:
raise ValueError("Upper var_limit should be non negative.")
self.var_limit = var_limit
elif isinstance(var_limit, (int, float)):
if var_limit < 0:
raise ValueError("var_limit should be non negative.")
self.var_limit = (0, var_limit)
else:
raise TypeError(
"Expected var_limit type to be one of (int, float, tuple, list), got {}".format(type(var_limit))
)
self.mean = mean
self.per_channel = per_channel
def apply(self, img, gauss=None, **params):
return F.gauss_noise(img, gauss=gauss)
def get_params_dependent_on_targets(self, params):
image = params["image"]
var = random.uniform(self.var_limit[0], self.var_limit[1])
sigma = var**0.5
if self.per_channel:
gauss = random_utils.normal(self.mean, sigma, image.shape)
else:
gauss = random_utils.normal(self.mean, sigma, image.shape[:2])
if len(image.shape) == 3:
gauss = np.expand_dims(gauss, -1)
return {"gauss": gauss}
@property
def targets_as_params(self):
return ["image"]
def get_transform_init_args_names(self):
return ("var_limit", "per_channel", "mean")
class ISONoise(ImageOnlyTransform):
"""
Apply camera sensor noise.
Args:
color_shift (float, float): variance range for color hue change.
Measured as a fraction of 360 degree Hue angle in HLS colorspace.
intensity ((float, float): Multiplicative factor that control strength
of color and luminace noise.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8
"""
def __init__(self, color_shift=(0.01, 0.05), intensity=(0.1, 0.5), always_apply=False, p=0.5):
super(ISONoise, self).__init__(always_apply, p)
self.intensity = intensity
self.color_shift = color_shift
def apply(self, img, color_shift=0.05, intensity=1.0, random_state=None, **params):
return F.iso_noise(img, color_shift, intensity, np.random.RandomState(random_state))
def get_params(self):
return {
"color_shift": random.uniform(self.color_shift[0], self.color_shift[1]),
"intensity": random.uniform(self.intensity[0], self.intensity[1]),
"random_state": random.randint(0, 65536),
}
def get_transform_init_args_names(self):
return ("intensity", "color_shift")
class CLAHE(ImageOnlyTransform):
"""Apply Contrast Limited Adaptive Histogram Equalization to the input image.
Args:
clip_limit (float or (float, float)): upper threshold value for contrast limiting.
If clip_limit is a single float value, the range will be (1, clip_limit). Default: (1, 4).
tile_grid_size ((int, int)): size of grid for histogram equalization. Default: (8, 8).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8
"""
def __init__(self, clip_limit=4.0, tile_grid_size=(8, 8), always_apply=False, p=0.5):
super(CLAHE, self).__init__(always_apply, p)
self.clip_limit = to_tuple(clip_limit, 1)
self.tile_grid_size = tuple(tile_grid_size)
def apply(self, img, clip_limit=2, **params):
if not is_rgb_image(img) and not is_grayscale_image(img):
raise TypeError("CLAHE transformation expects 1-channel or 3-channel images.")
return F.clahe(img, clip_limit, self.tile_grid_size)
def get_params(self):
return {"clip_limit": random.uniform(self.clip_limit[0], self.clip_limit[1])}
def get_transform_init_args_names(self):
return ("clip_limit", "tile_grid_size")
class ChannelShuffle(ImageOnlyTransform):
"""Randomly rearrange channels of the input RGB image.
Args:
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
@property
def targets_as_params(self):
return ["image"]
def apply(self, img, channels_shuffled=(0, 1, 2), **params):
return F.channel_shuffle(img, channels_shuffled)
def get_params_dependent_on_targets(self, params):
img = params["image"]
ch_arr = list(range(img.shape[2]))
random.shuffle(ch_arr)
return {"channels_shuffled": ch_arr}
def get_transform_init_args_names(self):
return ()
class InvertImg(ImageOnlyTransform):
"""Invert the input image by subtracting pixel values from max values of the image types,
i.e., 255 for uint8 and 1.0 for float32.
Args:
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def apply(self, img, **params):
return F.invert(img)
def get_transform_init_args_names(self):
return ()
class RandomGamma(ImageOnlyTransform):
"""
Args:
gamma_limit (float or (float, float)): If gamma_limit is a single float value,
the range will be (-gamma_limit, gamma_limit). Default: (80, 120).
eps: Deprecated.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, gamma_limit=(80, 120), eps=None, always_apply=False, p=0.5):
super(RandomGamma, self).__init__(always_apply, p)
self.gamma_limit = to_tuple(gamma_limit)
self.eps = eps
def apply(self, img, gamma=1, **params):
return F.gamma_transform(img, gamma=gamma)
def get_params(self):
return {"gamma": random.uniform(self.gamma_limit[0], self.gamma_limit[1]) / 100.0}
def get_transform_init_args_names(self):
return ("gamma_limit", "eps")
class ToGray(ImageOnlyTransform):
"""Convert the input RGB image to grayscale. If the mean pixel value for the resulting image is greater
than 127, invert the resulting grayscale image.
Args:
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def apply(self, img, **params):
if is_grayscale_image(img):
warnings.warn("The image is already gray.")
return img
if not is_rgb_image(img):
raise TypeError("ToGray transformation expects 3-channel images.")
return F.to_gray(img)
def get_transform_init_args_names(self):
return ()
class ToRGB(ImageOnlyTransform):
"""Convert the input grayscale image to RGB.
Args:
p (float): probability of applying the transform. Default: 1.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, always_apply=True, p=1.0):
super(ToRGB, self).__init__(always_apply=always_apply, p=p)
def apply(self, img, **params):
if is_rgb_image(img):
warnings.warn("The image is already an RGB.")
return img
if not is_grayscale_image(img):
raise TypeError("ToRGB transformation expects 2-dim images or 3-dim with the last dimension equal to 1.")
return F.gray_to_rgb(img)
def get_transform_init_args_names(self):
return ()
class ToSepia(ImageOnlyTransform):
"""Applies sepia filter to the input RGB image
Args:
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, always_apply=False, p=0.5):
super(ToSepia, self).__init__(always_apply, p)
self.sepia_transformation_matrix = np.array(
[[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]
)
def apply(self, image, **params):
if not is_rgb_image(image):
raise TypeError("ToSepia transformation expects 3-channel images.")
return F.linear_transformation_rgb(image, self.sepia_transformation_matrix)
def get_transform_init_args_names(self):
return ()
class ToFloat(ImageOnlyTransform):
"""Divide pixel values by `max_value` to get a float32 output array where all values lie in the range [0, 1.0].
If `max_value` is None the transform will try to infer the maximum value by inspecting the data type of the input
image.
See Also:
:class:`~albumentations.augmentations.transforms.FromFloat`
Args:
max_value (float): maximum possible input value. Default: None.
p (float): probability of applying the transform. Default: 1.0.
Targets:
image
Image types:
any type
"""
def __init__(self, max_value=None, always_apply=False, p=1.0):
super(ToFloat, self).__init__(always_apply, p)
self.max_value = max_value
def apply(self, img, **params):
return F.to_float(img, self.max_value)
def get_transform_init_args_names(self):
return ("max_value",)
class FromFloat(ImageOnlyTransform):
"""Take an input array where all values should lie in the range [0, 1.0], multiply them by `max_value` and then
cast the resulted value to a type specified by `dtype`. If `max_value` is None the transform will try to infer
the maximum value for the data type from the `dtype` argument.
This is the inverse transform for :class:`~albumentations.augmentations.transforms.ToFloat`.
Args:
max_value (float): maximum possible input value. Default: None.
dtype (string or numpy data type): data type of the output. See the `'Data types' page from the NumPy docs`_.
Default: 'uint16'.
p (float): probability of applying the transform. Default: 1.0.
Targets:
image
Image types:
float32
.. _'Data types' page from the NumPy docs:
https://docs.scipy.org/doc/numpy/user/basics.types.html
"""
def __init__(self, dtype="uint16", max_value=None, always_apply=False, p=1.0):
super(FromFloat, self).__init__(always_apply, p)
self.dtype = np.dtype(dtype)
self.max_value = max_value
def apply(self, img, **params):
return F.from_float(img, self.dtype, self.max_value)
def get_transform_init_args(self):
return {"dtype": self.dtype.name, "max_value": self.max_value}
class Downscale(ImageOnlyTransform):
"""Decreases image quality by downscaling and upscaling back.
Args:
scale_min (float): lower bound on the image scale. Should be < 1.
scale_max (float): lower bound on the image scale. Should be .
interpolation: cv2 interpolation method. Could be:
- single cv2 interpolation flag - selected method will be used for downscale and upscale.
- dict(downscale=flag, upscale=flag)
- Downscale.Interpolation(downscale=flag, upscale=flag) -
Default: Interpolation(downscale=cv2.INTER_NEAREST, upscale=cv2.INTER_NEAREST)
Targets:
image
Image types:
uint8, float32
"""
class Interpolation:
def __init__(self, *, downscale: int = cv2.INTER_NEAREST, upscale: int = cv2.INTER_NEAREST):
self.downscale = downscale
self.upscale = upscale
def __init__(
self,
scale_min: float = 0.25,
scale_max: float = 0.25,
interpolation: Optional[Union[int, Interpolation, Dict[str, int]]] = None,
always_apply: bool = False,
p: float = 0.5,
):
super(Downscale, self).__init__(always_apply, p)
if interpolation is None:
self.interpolation = self.Interpolation(downscale=cv2.INTER_NEAREST, upscale=cv2.INTER_NEAREST)
warnings.warn(
"Using default interpolation INTER_NEAREST, which is sub-optimal."
"Please specify interpolation mode for downscale and upscale explicitly."
"For additional information see this PR https://github.com/albumentations-team/albumentations/pull/584"
)
elif isinstance(interpolation, int):
self.interpolation = self.Interpolation(downscale=interpolation, upscale=interpolation)
elif isinstance(interpolation, self.Interpolation):
self.interpolation = interpolation
elif isinstance(interpolation, dict):
self.interpolation = self.Interpolation(**interpolation)
else:
raise ValueError(
"Wrong interpolation data type. Supported types: `Optional[Union[int, Interpolation, Dict[str, int]]]`."
f" Got: {type(interpolation)}"
)
if scale_min > scale_max:
raise ValueError("Expected scale_min be less or equal scale_max, got {} {}".format(scale_min, scale_max))
if scale_max >= 1:
raise ValueError("Expected scale_max to be less than 1, got {}".format(scale_max))
self.scale_min = scale_min
self.scale_max = scale_max
def apply(self, img: np.ndarray, scale: Optional[float] = None, **params) -> np.ndarray:
return F.downscale(
img,
scale=scale,
down_interpolation=self.interpolation.downscale,
up_interpolation=self.interpolation.upscale,
)
def get_params(self) -> Dict[str, Any]:
return {"scale": random.uniform(self.scale_min, self.scale_max)}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return "scale_min", "scale_max"
def _to_dict(self) -> Dict[str, Any]:
result = super()._to_dict()
result["interpolation"] = {"upscale": self.interpolation.upscale, "downscale": self.interpolation.downscale}
return result
class Lambda(NoOp):
"""A flexible transformation class for using user-defined transformation functions per targets.
Function signature must include **kwargs to accept optinal arguments like interpolation method, image size, etc:
Args:
image (callable): Image transformation function.
mask (callable): Mask transformation function.
keypoint (callable): Keypoint transformation function.
bbox (callable): BBox transformation function.
always_apply (bool): Indicates whether this transformation should be always applied.
p (float): probability of applying the transform. Default: 1.0.
Targets:
image, mask, bboxes, keypoints
Image types:
Any
"""
def __init__(
self,
image=None,
mask=None,
keypoint=None,
bbox=None,
name=None,
always_apply=False,
p=1.0,
):
super(Lambda, self).__init__(always_apply, p)
self.name = name
self.custom_apply_fns = {target_name: F.noop for target_name in ("image", "mask", "keypoint", "bbox")}
for target_name, custom_apply_fn in {
"image": image,
"mask": mask,
"keypoint": keypoint,
"bbox": bbox,
}.items():
if custom_apply_fn is not None:
if isinstance(custom_apply_fn, LambdaType) and custom_apply_fn.__name__ == "<lambda>":
warnings.warn(
"Using lambda is incompatible with multiprocessing. "
"Consider using regular functions or partial()."
)
self.custom_apply_fns[target_name] = custom_apply_fn
def apply(self, img, **params):
fn = self.custom_apply_fns["image"]
return fn(img, **params)
def apply_to_mask(self, mask, **params):
fn = self.custom_apply_fns["mask"]
return fn(mask, **params)
def apply_to_bbox(self, bbox, **params):
fn = self.custom_apply_fns["bbox"]
return fn(bbox, **params)
def apply_to_keypoint(self, keypoint, **params):
fn = self.custom_apply_fns["keypoint"]
return fn(keypoint, **params)
@classmethod
def is_serializable(cls):
return False
def _to_dict(self):
if self.name is None:
raise ValueError(
"To make a Lambda transform serializable you should provide the `name` argument, "
"e.g. `Lambda(name='my_transform', image=<some func>, ...)`."
)
return {"__class_fullname__": self.get_class_fullname(), "__name__": self.name}
def __repr__(self):
state = {"name": self.name}
state.update(self.custom_apply_fns.items())
state.update(self.get_base_init_args())
return "{name}({args})".format(name=self.__class__.__name__, args=format_args(state))
class MultiplicativeNoise(ImageOnlyTransform):
"""Multiply image to random number or array of numbers.
Args:
multiplier (float or tuple of floats): If single float image will be multiplied to this number.
If tuple of float multiplier will be in range `[multiplier[0], multiplier[1])`. Default: (0.9, 1.1).
per_channel (bool): If `False`, same values for all channels will be used.
If `True` use sample values for each channels. Default False.
elementwise (bool): If `False` multiply multiply all pixels in an image with a random value sampled once.
If `True` Multiply image pixels with values that are pixelwise randomly sampled. Defaule: False.
Targets:
image
Image types:
Any
"""
def __init__(
self,
multiplier=(0.9, 1.1),
per_channel=False,
elementwise=False,
always_apply=False,
p=0.5,
):
super(MultiplicativeNoise, self).__init__(always_apply, p)
self.multiplier = to_tuple(multiplier, multiplier)
self.per_channel = per_channel
self.elementwise = elementwise
def apply(self, img, multiplier=np.array([1]), **kwargs):
return F.multiply(img, multiplier)
def get_params_dependent_on_targets(self, params):
if self.multiplier[0] == self.multiplier[1]:
return {"multiplier": np.array([self.multiplier[0]])}
img = params["image"]
h, w = img.shape[:2]
if self.per_channel:
c = 1 if is_grayscale_image(img) else img.shape[-1]
else:
c = 1
if self.elementwise:
shape = [h, w, c]
else:
shape = [c]
multiplier = random_utils.uniform(self.multiplier[0], self.multiplier[1], shape)
if is_grayscale_image(img) and img.ndim == 2:
multiplier = np.squeeze(multiplier)
return {"multiplier": multiplier}
@property
def targets_as_params(self):
return ["image"]
def get_transform_init_args_names(self):
return "multiplier", "per_channel", "elementwise"
class FancyPCA(ImageOnlyTransform):
"""Augment RGB image using FancyPCA from Krizhevsky's paper
"ImageNet Classification with Deep Convolutional Neural Networks"
Args:
alpha (float): how much to perturb/scale the eigen vecs and vals.
scale is samples from gaussian distribution (mu=0, sigma=alpha)
Targets:
image
Image types:
3-channel uint8 images only
Credit:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://deshanadesai.github.io/notes/Fancy-PCA-with-Scikit-Image
https://pixelatedbrian.github.io/2018-04-29-fancy_pca/
"""
def __init__(self, alpha=0.1, always_apply=False, p=0.5):
super(FancyPCA, self).__init__(always_apply=always_apply, p=p)
self.alpha = alpha
def apply(self, img, alpha=0.1, **params):
img = F.fancy_pca(img, alpha)
return img
def get_params(self):
return {"alpha": random.gauss(0, self.alpha)}
def get_transform_init_args_names(self):
return ("alpha",)
class ColorJitter(ImageOnlyTransform):
"""Randomly changes the brightness, contrast, and saturation of an image. Compared to ColorJitter from torchvision,
this transform gives a little bit different results because Pillow (used in torchvision) and OpenCV (used in
Albumentations) transform an image to HSV format by different formulas. Another difference - Pillow uses uint8
overflow, but we use value saturation.
Args:
brightness (float or tuple of float (min, max)): How much to jitter brightness.
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
or the given [min, max]. Should be non negative numbers.
contrast (float or tuple of float (min, max)): How much to jitter contrast.
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
or the given [min, max]. Should be non negative numbers.
saturation (float or tuple of float (min, max)): How much to jitter saturation.
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
or the given [min, max]. Should be non negative numbers.
hue (float or tuple of float (min, max)): How much to jitter hue.
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0 <= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
"""
def __init__(
self,
brightness=0.2,
contrast=0.2,
saturation=0.2,
hue=0.2,
always_apply=False,
p=0.5,
):
super(ColorJitter, self).__init__(always_apply=always_apply, p=p)
self.brightness = self.__check_values(brightness, "brightness")
self.contrast = self.__check_values(contrast, "contrast")
self.saturation = self.__check_values(saturation, "saturation")
self.hue = self.__check_values(hue, "hue", offset=0, bounds=[-0.5, 0.5], clip=False)
self.transforms = [
F.adjust_brightness_torchvision,
F.adjust_contrast_torchvision,
F.adjust_saturation_torchvision,
F.adjust_hue_torchvision,
]
@staticmethod
def __check_values(value, name, offset=1, bounds=(0, float("inf")), clip=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError("If {} is a single number, it must be non negative.".format(name))
value = [offset - value, offset + value]
if clip:
value[0] = max(value[0], 0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError("{} values should be between {}".format(name, bounds))
else:
raise TypeError("{} should be a single number or a list/tuple with length 2.".format(name))
return value
def get_params(self):
brightness = random.uniform(self.brightness[0], self.brightness[1])
contrast = random.uniform(self.contrast[0], self.contrast[1])
saturation = random.uniform(self.saturation[0], self.saturation[1])
hue = random.uniform(self.hue[0], self.hue[1])
order = [0, 1, 2, 3]
random.shuffle(order)
return {
"brightness": brightness,
"contrast": contrast,
"saturation": saturation,
"hue": hue,
"order": order,
}
def apply(self, img, brightness=1.0, contrast=1.0, saturation=1.0, hue=0, order=[0, 1, 2, 3], **params):
if not is_rgb_image(img) and not is_grayscale_image(img):
raise TypeError("ColorJitter transformation expects 1-channel or 3-channel images.")
params = [brightness, contrast, saturation, hue]
for i in order:
img = self.transforms[i](img, params[i])
return img
def get_transform_init_args_names(self):
return ("brightness", "contrast", "saturation", "hue")
class Sharpen(ImageOnlyTransform):
"""Sharpen the input image and overlays the result with the original image.
Args:
alpha ((float, float)): range to choose the visibility of the sharpened image. At 0, only the original image is
visible, at 1.0 only its sharpened version is visible. Default: (0.2, 0.5).
lightness ((float, float)): range to choose the lightness of the sharpened image. Default: (0.5, 1.0).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
"""
def __init__(self, alpha=(0.2, 0.5), lightness=(0.5, 1.0), always_apply=False, p=0.5):
super(Sharpen, self).__init__(always_apply, p)
self.alpha = self.__check_values(to_tuple(alpha, 0.0), name="alpha", bounds=(0.0, 1.0))
self.lightness = self.__check_values(to_tuple(lightness, 0.0), name="lightness")
@staticmethod
def __check_values(value, name, bounds=(0, float("inf"))):
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError("{} values should be between {}".format(name, bounds))
return value
@staticmethod
def __generate_sharpening_matrix(alpha_sample, lightness_sample):
matrix_nochange = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32)
matrix_effect = np.array(
[[-1, -1, -1], [-1, 8 + lightness_sample, -1], [-1, -1, -1]],
dtype=np.float32,
)
matrix = (1 - alpha_sample) * matrix_nochange + alpha_sample * matrix_effect
return matrix
def get_params(self):
alpha = random.uniform(*self.alpha)
lightness = random.uniform(*self.lightness)
sharpening_matrix = self.__generate_sharpening_matrix(alpha_sample=alpha, lightness_sample=lightness)
return {"sharpening_matrix": sharpening_matrix}
def apply(self, img, sharpening_matrix=None, **params):
return F.convolve(img, sharpening_matrix)
def get_transform_init_args_names(self):
return ("alpha", "lightness")
class Emboss(ImageOnlyTransform):
"""Emboss the input image and overlays the result with the original image.
Args:
alpha ((float, float)): range to choose the visibility of the embossed image. At 0, only the original image is
visible,at 1.0 only its embossed version is visible. Default: (0.2, 0.5).
strength ((float, float)): strength range of the embossing. Default: (0.2, 0.7).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
"""
def __init__(self, alpha=(0.2, 0.5), strength=(0.2, 0.7), always_apply=False, p=0.5):
super(Emboss, self).__init__(always_apply, p)
self.alpha = self.__check_values(to_tuple(alpha, 0.0), name="alpha", bounds=(0.0, 1.0))
self.strength = self.__check_values(to_tuple(strength, 0.0), name="strength")
@staticmethod
def __check_values(value, name, bounds=(0, float("inf"))):
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError("{} values should be between {}".format(name, bounds))
return value
@staticmethod
def __generate_emboss_matrix(alpha_sample, strength_sample):
matrix_nochange = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32)
matrix_effect = np.array(
[
[-1 - strength_sample, 0 - strength_sample, 0],
[0 - strength_sample, 1, 0 + strength_sample],
[0, 0 + strength_sample, 1 + strength_sample],
],
dtype=np.float32,
)
matrix = (1 - alpha_sample) * matrix_nochange + alpha_sample * matrix_effect
return matrix
def get_params(self):
alpha = random.uniform(*self.alpha)
strength = random.uniform(*self.strength)
emboss_matrix = self.__generate_emboss_matrix(alpha_sample=alpha, strength_sample=strength)
return {"emboss_matrix": emboss_matrix}
def apply(self, img, emboss_matrix=None, **params):
return F.convolve(img, emboss_matrix)
def get_transform_init_args_names(self):
return ("alpha", "strength")
class Superpixels(ImageOnlyTransform):
"""Transform images partially/completely to their superpixel representation.
This implementation uses skimage's version of the SLIC algorithm.
Args:
p_replace (float or tuple of float): Defines for any segment the probability that the pixels within that
segment are replaced by their average color (otherwise, the pixels are not changed).
Examples:
* A probability of ``0.0`` would mean, that the pixels in no
segment are replaced by their average color (image is not
changed at all).
* A probability of ``0.5`` would mean, that around half of all
segments are replaced by their average color.
* A probability of ``1.0`` would mean, that all segments are
replaced by their average color (resulting in a voronoi
image).
Behaviour based on chosen data types for this parameter:
* If a ``float``, then that ``flat`` will always be used.
* If ``tuple`` ``(a, b)``, then a random probability will be
sampled from the interval ``[a, b]`` per image.
n_segments (int, or tuple of int): Rough target number of how many superpixels to generate (the algorithm
may deviate from this number). Lower value will lead to coarser superpixels.
Higher values are computationally more intensive and will hence lead to a slowdown
* If a single ``int``, then that value will always be used as the
number of segments.
* If a ``tuple`` ``(a, b)``, then a value from the discrete
interval ``[a..b]`` will be sampled per image.
max_size (int or None): Maximum image size at which the augmentation is performed.
If the width or height of an image exceeds this value, it will be
downscaled before the augmentation so that the longest side matches `max_size`.
This is done to speed up the process. The final output image has the same size as the input image.
Note that in case `p_replace` is below ``1.0``,
the down-/upscaling will affect the not-replaced pixels too.
Use ``None`` to apply no down-/upscaling.
interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
Default: cv2.INTER_LINEAR.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
"""
def __init__(
self,
p_replace: Union[float, Sequence[float]] = 0.1,
n_segments: Union[int, Sequence[int]] = 100,
max_size: Optional[int] = 128,
interpolation: int = cv2.INTER_LINEAR,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply=always_apply, p=p)
self.p_replace = to_tuple(p_replace, p_replace)
self.n_segments = to_tuple(n_segments, n_segments)
self.max_size = max_size
self.interpolation = interpolation
if min(self.n_segments) < 1:
raise ValueError(f"n_segments must be >= 1. Got: {n_segments}")
def get_transform_init_args_names(self) -> Tuple[str, str, str, str]:
return ("p_replace", "n_segments", "max_size", "interpolation")
def get_params(self) -> dict:
n_segments = random.randint(*self.n_segments)
p = random.uniform(*self.p_replace)
return {"replace_samples": random_utils.random(n_segments) < p, "n_segments": n_segments}
def apply(self, img: np.ndarray, replace_samples: Sequence[bool] = (False,), n_segments: int = 1, **kwargs):
return F.superpixels(img, n_segments, replace_samples, self.max_size, self.interpolation)
class TemplateTransform(ImageOnlyTransform):
"""
Apply blending of input image with specified templates
Args:
templates (numpy array or list of numpy arrays): Images as template for transform.
img_weight ((float, float) or float): If single float will be used as weight for input image.
If tuple of float img_weight will be in range `[img_weight[0], img_weight[1])`. Default: 0.5.
template_weight ((float, float) or float): If single float will be used as weight for template.
If tuple of float template_weight will be in range `[template_weight[0], template_weight[1])`.
Default: 0.5.
template_transform: transformation object which could be applied to template,
must produce template the same size as input image.
name (string): (Optional) Name of transform, used only for deserialization.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
templates,
img_weight=0.5,
template_weight=0.5,
template_transform=None,
name=None,
always_apply=False,
p=0.5,
):
super().__init__(always_apply, p)
self.templates = templates if isinstance(templates, (list, tuple)) else [templates]
self.img_weight = to_tuple(img_weight, img_weight)
self.template_weight = to_tuple(template_weight, template_weight)
self.template_transform = template_transform
self.name = name
def apply(self, img, template=None, img_weight=0.5, template_weight=0.5, **params):
return F.add_weighted(img, img_weight, template, template_weight)
def get_params(self):
return {
"img_weight": random.uniform(self.img_weight[0], self.img_weight[1]),
"template_weight": random.uniform(self.template_weight[0], self.template_weight[1]),
}
def get_params_dependent_on_targets(self, params):
img = params["image"]
template = random.choice(self.templates)
if self.template_transform is not None:
template = self.template_transform(image=template)["image"]
if get_num_channels(template) not in [1, get_num_channels(img)]:
raise ValueError(
"Template must be a single channel or "
"has the same number of channels as input image ({}), got {}".format(
get_num_channels(img), get_num_channels(template)
)
)
if template.dtype != img.dtype:
raise ValueError("Image and template must be the same image type")
if img.shape[:2] != template.shape[:2]:
raise ValueError(
"Image and template must be the same size, got {} and {}".format(img.shape[:2], template.shape[:2])
)
if get_num_channels(template) == 1 and get_num_channels(img) > 1:
template = np.stack((template,) * get_num_channels(img), axis=-1)
# in order to support grayscale image with dummy dim
template = template.reshape(img.shape)
return {"template": template}
@classmethod
def is_serializable(cls):
return False
@property
def targets_as_params(self):
return ["image"]
def _to_dict(self):
if self.name is None:
raise ValueError(
"To make a TemplateTransform serializable you should provide the `name` argument, "
"e.g. `TemplateTransform(name='my_transform', ...)`."
)
return {"__class_fullname__": self.get_class_fullname(), "__name__": self.name}
class RingingOvershoot(ImageOnlyTransform):
"""Create ringing or overshoot artefacts by conlvolving image with 2D sinc filter.
Args:
blur_limit (int, (int, int)): maximum kernel size for sinc filter.
Should be in range [3, inf). Default: (7, 15).
cutoff (float, (float, float)): range to choose the cutoff frequency in radians.
Should be in range (0, np.pi)
Default: (np.pi / 4, np.pi / 2).
p (float): probability of applying the transform. Default: 0.5.
Reference:
dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
https://arxiv.org/abs/2107.10833
Targets:
image
"""
def __init__(
self,
blur_limit: Union[int, Sequence[int]] = (7, 15),
cutoff: Union[float, Sequence[float]] = (np.pi / 4, np.pi / 2),
always_apply=False,
p=0.5,
):
super(RingingOvershoot, self).__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 3)
self.cutoff = self.__check_values(to_tuple(cutoff, np.pi / 2), name="cutoff", bounds=(0, np.pi))
@staticmethod
def __check_values(value, name, bounds=(0, float("inf"))):
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError(f"{name} values should be between {bounds}")
return value
def get_params(self):
ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2)
if ksize % 2 == 0:
raise ValueError(f"Kernel size must be odd. Got: {ksize}")
cutoff = random.uniform(*self.cutoff)
# From dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
with np.errstate(divide="ignore", invalid="ignore"):
kernel = np.fromfunction(
lambda x, y: cutoff
* special.j1(cutoff * np.sqrt((x - (ksize - 1) / 2) ** 2 + (y - (ksize - 1) / 2) ** 2))
/ (2 * np.pi * np.sqrt((x - (ksize - 1) / 2) ** 2 + (y - (ksize - 1) / 2) ** 2)),
[ksize, ksize],
)
kernel[(ksize - 1) // 2, (ksize - 1) // 2] = cutoff**2 / (4 * np.pi)
# Normalize kernel
kernel = kernel.astype(np.float32) / np.sum(kernel)
return {"kernel": kernel}
def apply(self, img, kernel=None, **params):
return F.convolve(img, kernel)
def get_transform_init_args_names(self):
return ("blur_limit", "cutoff")
class UnsharpMask(ImageOnlyTransform):
"""
Sharpen the input image using Unsharp Masking processing and overlays the result with the original image.
Args:
blur_limit (int, (int, int)): maximum Gaussian kernel size for blurring the input image.
Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
If set single value `blur_limit` will be in range (0, blur_limit).
Default: (3, 7).
sigma_limit (float, (float, float)): Gaussian kernel standard deviation. Must be in range [0, inf).
If set single value `sigma_limit` will be in range (0, sigma_limit).
If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
alpha (float, (float, float)): range to choose the visibility of the sharpened image.
At 0, only the original image is visible, at 1.0 only its sharpened version is visible.
Default: (0.2, 0.5).
threshold (int): Value to limit sharpening only for areas with high pixel difference between original image
and it's smoothed version. Higher threshold means less sharpening on flat areas.
Must be in range [0, 255]. Default: 10.
p (float): probability of applying the transform. Default: 0.5.
Reference:
arxiv.org/pdf/2107.10833.pdf
Targets:
image
"""
def __init__(
self,
blur_limit: Union[int, Sequence[int]] = (3, 7),
sigma_limit: Union[float, Sequence[float]] = 0.0,
alpha: Union[float, Sequence[float]] = (0.2, 0.5),
threshold: int = 10,
always_apply=False,
p=0.5,
):
super(UnsharpMask, self).__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 3)
self.sigma_limit = self.__check_values(to_tuple(sigma_limit, 0.0), name="sigma_limit")
self.alpha = self.__check_values(to_tuple(alpha, 0.0), name="alpha", bounds=(0.0, 1.0))
self.threshold = threshold
if self.blur_limit[0] == 0 and self.sigma_limit[0] == 0:
self.blur_limit = 3, max(3, self.blur_limit[1])
raise ValueError("blur_limit and sigma_limit minimum value can not be both equal to 0.")
if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
):
raise ValueError("UnsharpMask supports only odd blur limits.")
@staticmethod
def __check_values(value, name, bounds=(0, float("inf"))):
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError(f"{name} values should be between {bounds}")
return value
def get_params(self):
return {
"ksize": random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2),
"sigma": random.uniform(*self.sigma_limit),
"alpha": random.uniform(*self.alpha),
}
def apply(self, img, ksize=3, sigma=0, alpha=0.2, **params):
return F.unsharp_mask(img, ksize, sigma=sigma, alpha=alpha, threshold=self.threshold)
def get_transform_init_args_names(self):
return ("blur_limit", "sigma_limit", "alpha", "threshold")
class PixelDropout(DualTransform):
"""Set pixels to 0 with some probability.
Args:
dropout_prob (float): pixel drop probability. Default: 0.01
per_channel (bool): if set to `True` drop mask will be sampled fo each channel,
otherwise the same mask will be sampled for all channels. Default: False
drop_value (number or sequence of numbers or None): Value that will be set in dropped place.
If set to None value will be sampled randomly, default ranges will be used:
- uint8 - [0, 255]
- uint16 - [0, 65535]
- uint32 - [0, 4294967295]
- float, double - [0, 1]
Default: 0
mask_drop_value (number or sequence of numbers or None): Value that will be set in dropped place in masks.
If set to None masks will be unchanged. Default: 0
p (float): probability of applying the transform. Default: 0.5.
Targets:
image, mask
Image types:
any
"""
def __init__(
self,
dropout_prob: float = 0.01,
per_channel: bool = False,
drop_value: Optional[Union[float, Sequence[float]]] = 0,
mask_drop_value: Optional[Union[float, Sequence[float]]] = None,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.dropout_prob = dropout_prob
self.per_channel = per_channel
self.drop_value = drop_value
self.mask_drop_value = mask_drop_value
if self.mask_drop_value is not None and self.per_channel:
raise ValueError("PixelDropout supports mask only with per_channel=False")
def apply(
self,
img: np.ndarray,
drop_mask: np.ndarray = np.array(None),
drop_value: Union[float, Sequence[float]] = (),
**params
) -> np.ndarray:
return F.pixel_dropout(img, drop_mask, drop_value)
def apply_to_mask(self, img: np.ndarray, drop_mask: np.ndarray = np.array(None), **params) -> np.ndarray:
if self.mask_drop_value is None:
return img
if img.ndim == 2:
drop_mask = np.squeeze(drop_mask)
return F.pixel_dropout(img, drop_mask, self.mask_drop_value)
def apply_to_bbox(self, bbox, **params):
return bbox
def apply_to_keypoint(self, keypoint, **params):
return keypoint
def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, Any]:
img = params["image"]
shape = img.shape if self.per_channel else img.shape[:2]
rnd = np.random.RandomState(random.randint(0, 1 << 31))
# Use choice to create boolean matrix, if we will use binomial after that we will need type conversion
drop_mask = rnd.choice([True, False], shape, p=[self.dropout_prob, 1 - self.dropout_prob])
drop_value: Union[float, Sequence[float], np.ndarray]
if drop_mask.ndim != img.ndim:
drop_mask = np.expand_dims(drop_mask, -1)
if self.drop_value is None:
drop_shape = 1 if is_grayscale_image(img) else int(img.shape[-1])
if img.dtype in (np.uint8, np.uint16, np.uint32):
drop_value = rnd.randint(0, int(F.MAX_VALUES_BY_DTYPE[img.dtype]), drop_shape, img.dtype)
elif img.dtype in [np.float32, np.double]:
drop_value = rnd.uniform(0, 1, drop_shape).astype(img.dtype)
else:
raise ValueError(f"Unsupported dtype: {img.dtype}")
else:
drop_value = self.drop_value
return {"drop_mask": drop_mask, "drop_value": drop_value}
@property
def targets_as_params(self) -> List[str]:
return ["image"]
def get_transform_init_args_names(self) -> Tuple[str, str, str, str]:
return ("dropout_prob", "per_channel", "drop_value", "mask_drop_value")
class Spatter(ImageOnlyTransform):
"""
Apply spatter transform. It simulates corruption which can occlude a lens in the form of rain or mud.
Args:
mean (float, or tuple of floats): Mean value of normal distribution for generating liquid layer.
If single float it will be used as mean.
If tuple of float mean will be sampled from range `[mean[0], mean[1])`. Default: (0.65).
std (float, or tuple of floats): Standard deviation value of normal distribution for generating liquid layer.
If single float it will be used as std.
If tuple of float std will be sampled from range `[std[0], std[1])`. Default: (0.3).
gauss_sigma (float, or tuple of floats): Sigma value for gaussian filtering of liquid layer.
If single float it will be used as gauss_sigma.
If tuple of float gauss_sigma will be sampled from range `[sigma[0], sigma[1])`. Default: (2).
cutout_threshold (float, or tuple of floats): Threshold for filtering liqued layer
(determines number of drops). If single float it will used as cutout_threshold.
If tuple of float cutout_threshold will be sampled from range `[cutout_threshold[0], cutout_threshold[1])`.
Default: (0.68).
intensity (float, or tuple of floats): Intensity of corruption.
If single float it will be used as intensity.
If tuple of float intensity will be sampled from range `[intensity[0], intensity[1])`. Default: (0.6).
mode (string, or list of strings): Type of corruption. Currently, supported options are 'rain' and 'mud'.
If list is provided type of corruption will be sampled list. Default: ("rain").
color (list of (r, g, b) or dict or None): Corruption elements color.
If list uses provided list as color for specified mode.
If dict uses provided color for specified mode. Color for each specified mode should be provided in dict.
If None uses default colors (rain: (238, 238, 175), mud: (20, 42, 63)).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Reference:
| https://arxiv.org/pdf/1903.12261.pdf
| https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
"""
def __init__(
self,
mean: ScaleFloatType = 0.65,
std: ScaleFloatType = 0.3,
gauss_sigma: ScaleFloatType = 2,
cutout_threshold: ScaleFloatType = 0.68,
intensity: ScaleFloatType = 0.6,
mode: Union[str, Sequence[str]] = "rain",
color: Optional[Union[Sequence[int], Dict[str, Sequence[int]]]] = None,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply=always_apply, p=p)
self.mean = to_tuple(mean, mean)
self.std = to_tuple(std, std)
self.gauss_sigma = to_tuple(gauss_sigma, gauss_sigma)
self.intensity = to_tuple(intensity, intensity)
self.cutout_threshold = to_tuple(cutout_threshold, cutout_threshold)
self.color = (
color
if color is not None
else {
"rain": [238, 238, 175],
"mud": [20, 42, 63],
}
)
self.mode = mode if isinstance(mode, (list, tuple)) else [mode]
if len(set(self.mode)) > 1 and not isinstance(self.color, dict):
raise ValueError(f"Unsupported color: {self.color}. Please specify color for each mode (use dict for it).")
for i in self.mode:
if i not in ["rain", "mud"]:
raise ValueError(f"Unsupported color mode: {mode}. Transform supports only `rain` and `mud` mods.")
if isinstance(self.color, dict):
if i not in self.color:
raise ValueError(f"Wrong color definition: {self.color}. Color for mode: {i} not specified.")
if len(self.color[i]) != 3:
raise ValueError(
f"Unsupported color: {self.color[i]} for mode {i}. Color should be presented in RGB format."
)
if isinstance(self.color, (list, tuple)):
if len(self.color) != 3:
raise ValueError(f"Unsupported color: {self.color}. Color should be presented in RGB format.")
self.color = {self.mode[0]: self.color}
def apply(
self,
img: np.ndarray,
non_mud: Optional[np.ndarray] = None,
mud: Optional[np.ndarray] = None,
drops: Optional[np.ndarray] = None,
mode: str = "",
**params
) -> np.ndarray:
return F.spatter(img, non_mud, mud, drops, mode)
@property
def targets_as_params(self) -> List[str]:
return ["image"]
def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, Any]:
h, w = params["image"].shape[:2]
mean = random.uniform(self.mean[0], self.mean[1])
std = random.uniform(self.std[0], self.std[1])
cutout_threshold = random.uniform(self.cutout_threshold[0], self.cutout_threshold[1])
sigma = random.uniform(self.gauss_sigma[0], self.gauss_sigma[1])
mode = random.choice(self.mode)
intensity = random.uniform(self.intensity[0], self.intensity[1])
color = np.array(self.color[mode]) / 255.0
liquid_layer = random_utils.normal(size=(h, w), loc=mean, scale=std)
liquid_layer = gaussian_filter(liquid_layer, sigma=sigma, mode="nearest")
liquid_layer[liquid_layer < cutout_threshold] = 0
if mode == "rain":
liquid_layer = (liquid_layer * 255).astype(np.uint8)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = blur(dist, 3).astype(np.uint8)
dist = F.equalize(dist)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = F.convolve(dist, ker)
dist = blur(dist, 3).astype(np.float32)
m = liquid_layer * dist
m *= 1 / np.max(m, axis=(0, 1))
drops = m[:, :, None] * color * intensity
mud = None
non_mud = None
else:
m = np.where(liquid_layer > cutout_threshold, 1, 0)
m = gaussian_filter(m.astype(np.float32), sigma=sigma, mode="nearest")
m[m < 1.2 * cutout_threshold] = 0
m = m[..., np.newaxis]
mud = m * color
non_mud = 1 - m
drops = None
return {
"non_mud": non_mud,
"mud": mud,
"drops": drops,
"mode": mode,
}
def get_transform_init_args_names(self) -> Tuple[str, str, str, str, str, str, str]:
return "mean", "std", "gauss_sigma", "intensity", "cutout_threshold", "mode", "color"