FooocusEnhanced / custom_albumentations /core /transforms_interface.py
JasonSmithSO's picture
Upload 777 files
0034848 verified
from __future__ import absolute_import
import random
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union, cast
from warnings import warn
import cv2
import numpy as np
from .serialization import Serializable, get_shortest_class_fullname
from .utils import format_args
__all__ = [
"to_tuple",
"BasicTransform",
"DualTransform",
"ImageOnlyTransform",
"NoOp",
"BoxType",
"KeypointType",
"ImageColorType",
"ScaleFloatType",
"ScaleIntType",
"ImageColorType",
]
NumType = Union[int, float, np.ndarray]
BoxInternalType = Tuple[float, float, float, float]
BoxType = Union[BoxInternalType, Tuple[float, float, float, float, Any]]
KeypointInternalType = Tuple[float, float, float, float]
KeypointType = Union[KeypointInternalType, Tuple[float, float, float, float, Any]]
ImageColorType = Union[float, Sequence[float]]
ScaleFloatType = Union[float, Tuple[float, float]]
ScaleIntType = Union[int, Tuple[int, int]]
FillValueType = Optional[Union[int, float, Sequence[int], Sequence[float]]]
def to_tuple(param, low=None, bias=None):
"""Convert input argument to min-max tuple
Args:
param (scalar, tuple or list of 2+ elements): Input value.
If value is scalar, return value would be (offset - value, offset + value).
If value is tuple, return value would be value + offset (broadcasted).
low: Second element of tuple can be passed as optional argument
bias: An offset factor added to each element
"""
if low is not None and bias is not None:
raise ValueError("Arguments low and bias are mutually exclusive")
if param is None:
return param
if isinstance(param, (int, float)):
if low is None:
param = -param, +param
else:
param = (low, param) if low < param else (param, low)
elif isinstance(param, Sequence):
if len(param) != 2:
raise ValueError("to_tuple expects 1 or 2 values")
param = tuple(param)
else:
raise ValueError("Argument param must be either scalar (int, float) or tuple")
if bias is not None:
return tuple(bias + x for x in param)
return tuple(param)
class BasicTransform(Serializable):
call_backup = None
interpolation: Any
fill_value: Any
mask_fill_value: Any
def __init__(self, always_apply: bool = False, p: float = 0.5):
self.p = p
self.always_apply = always_apply
self._additional_targets: Dict[str, str] = {}
# replay mode params
self.deterministic = False
self.save_key = "replay"
self.params: Dict[Any, Any] = {}
self.replay_mode = False
self.applied_in_replay = False
def __call__(self, *args, force_apply: bool = False, **kwargs) -> Dict[str, Any]:
if args:
raise KeyError("You have to pass data to augmentations as named arguments, for example: aug(image=image)")
if self.replay_mode:
if self.applied_in_replay:
return self.apply_with_params(self.params, **kwargs)
return kwargs
if (random.random() < self.p) or self.always_apply or force_apply:
params = self.get_params()
if self.targets_as_params:
assert all(key in kwargs for key in self.targets_as_params), "{} requires {}".format(
self.__class__.__name__, self.targets_as_params
)
targets_as_params = {k: kwargs[k] for k in self.targets_as_params}
params_dependent_on_targets = self.get_params_dependent_on_targets(targets_as_params)
params.update(params_dependent_on_targets)
if self.deterministic:
if self.targets_as_params:
warn(
self.get_class_fullname() + " could work incorrectly in ReplayMode for other input data"
" because its' params depend on targets."
)
kwargs[self.save_key][id(self)] = deepcopy(params)
return self.apply_with_params(params, **kwargs)
return kwargs
def apply_with_params(self, params: Dict[str, Any], **kwargs) -> Dict[str, Any]: # skipcq: PYL-W0613
if params is None:
return kwargs
params = self.update_params(params, **kwargs)
res = {}
for key, arg in kwargs.items():
if arg is not None:
target_function = self._get_target_function(key)
target_dependencies = {k: kwargs[k] for k in self.target_dependence.get(key, [])}
res[key] = target_function(arg, **dict(params, **target_dependencies))
else:
res[key] = None
return res
def set_deterministic(self, flag: bool, save_key: str = "replay") -> "BasicTransform":
assert save_key != "params", "params save_key is reserved"
self.deterministic = flag
self.save_key = save_key
return self
def __repr__(self) -> str:
state = self.get_base_init_args()
state.update(self.get_transform_init_args())
return "{name}({args})".format(name=self.__class__.__name__, args=format_args(state))
def _get_target_function(self, key: str) -> Callable:
transform_key = key
if key in self._additional_targets:
transform_key = self._additional_targets.get(key, key)
target_function = self.targets.get(transform_key, lambda x, **p: x)
return target_function
def apply(self, img: np.ndarray, **params) -> np.ndarray:
raise NotImplementedError
def get_params(self) -> Dict:
return {}
@property
def targets(self) -> Dict[str, Callable]:
# you must specify targets in subclass
# for example: ('image', 'mask')
# ('image', 'boxes')
raise NotImplementedError
def update_params(self, params: Dict[str, Any], **kwargs) -> Dict[str, Any]:
if hasattr(self, "interpolation"):
params["interpolation"] = self.interpolation
if hasattr(self, "fill_value"):
params["fill_value"] = self.fill_value
if hasattr(self, "mask_fill_value"):
params["mask_fill_value"] = self.mask_fill_value
params.update({"cols": kwargs["image"].shape[1], "rows": kwargs["image"].shape[0]})
return params
@property
def target_dependence(self) -> Dict:
return {}
def add_targets(self, additional_targets: Dict[str, str]):
"""Add targets to transform them the same way as one of existing targets
ex: {'target_image': 'image'}
ex: {'obj1_mask': 'mask', 'obj2_mask': 'mask'}
by the way you must have at least one object with key 'image'
Args:
additional_targets (dict): keys - new target name, values - old target name. ex: {'image2': 'image'}
"""
self._additional_targets = additional_targets
@property
def targets_as_params(self) -> List[str]:
return []
def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, Any]:
raise NotImplementedError(
"Method get_params_dependent_on_targets is not implemented in class " + self.__class__.__name__
)
@classmethod
def get_class_fullname(cls) -> str:
return get_shortest_class_fullname(cls)
@classmethod
def is_serializable(cls):
return True
def get_transform_init_args_names(self) -> Tuple[str, ...]:
raise NotImplementedError(
"Class {name} is not serializable because the `get_transform_init_args_names` method is not "
"implemented".format(name=self.get_class_fullname())
)
def get_base_init_args(self) -> Dict[str, Any]:
return {"always_apply": self.always_apply, "p": self.p}
def get_transform_init_args(self) -> Dict[str, Any]:
return {k: getattr(self, k) for k in self.get_transform_init_args_names()}
def _to_dict(self) -> Dict[str, Any]:
state = {"__class_fullname__": self.get_class_fullname()}
state.update(self.get_base_init_args())
state.update(self.get_transform_init_args())
return state
def get_dict_with_id(self) -> Dict[str, Any]:
d = self._to_dict()
d["id"] = id(self)
return d
class DualTransform(BasicTransform):
"""Transform for segmentation task."""
@property
def targets(self) -> Dict[str, Callable]:
return {
"image": self.apply,
"mask": self.apply_to_mask,
"masks": self.apply_to_masks,
"bboxes": self.apply_to_bboxes,
"keypoints": self.apply_to_keypoints,
}
def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
raise NotImplementedError("Method apply_to_bbox is not implemented in class " + self.__class__.__name__)
def apply_to_keypoint(self, keypoint: KeypointInternalType, **params) -> KeypointInternalType:
raise NotImplementedError("Method apply_to_keypoint is not implemented in class " + self.__class__.__name__)
def apply_to_bboxes(self, bboxes: Sequence[BoxType], **params) -> List[BoxType]:
return [self.apply_to_bbox(tuple(bbox[:4]), **params) + tuple(bbox[4:]) for bbox in bboxes] # type: ignore
def apply_to_keypoints(self, keypoints: Sequence[KeypointType], **params) -> List[KeypointType]:
return [ # type: ignore
self.apply_to_keypoint(tuple(keypoint[:4]), **params) + tuple(keypoint[4:]) # type: ignore
for keypoint in keypoints
]
def apply_to_mask(self, img: np.ndarray, **params) -> np.ndarray:
return self.apply(img, **{k: cv2.INTER_NEAREST if k == "interpolation" else v for k, v in params.items()})
def apply_to_masks(self, masks: Sequence[np.ndarray], **params) -> List[np.ndarray]:
return [self.apply_to_mask(mask, **params) for mask in masks]
class ImageOnlyTransform(BasicTransform):
"""Transform applied to image only."""
@property
def targets(self) -> Dict[str, Callable]:
return {"image": self.apply}
class NoOp(DualTransform):
"""Does nothing"""
def apply_to_keypoint(self, keypoint: KeypointInternalType, **params) -> KeypointInternalType:
return keypoint
def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
return bbox
def apply(self, img: np.ndarray, **params) -> np.ndarray:
return img
def apply_to_mask(self, img: np.ndarray, **params) -> np.ndarray:
return img
def get_transform_init_args_names(self) -> Tuple:
return ()