JasonSmithSO's picture
Upload 777 files
0034848 verified
from __future__ import absolute_import
import warnings
import numpy as np
import torch
from torchvision.transforms import functional as F
from ..core.transforms_interface import BasicTransform
__all__ = ["ToTensorV2"]
def img_to_tensor(im, normalize=None):
tensor = torch.from_numpy(np.moveaxis(im / (255.0 if im.dtype == np.uint8 else 1), -1, 0).astype(np.float32))
if normalize is not None:
return F.normalize(tensor, **normalize)
return tensor
def mask_to_tensor(mask, num_classes, sigmoid):
if num_classes > 1:
if not sigmoid:
# softmax
long_mask = np.zeros((mask.shape[:2]), dtype=np.int64)
if len(mask.shape) == 3:
for c in range(mask.shape[2]):
long_mask[mask[..., c] > 0] = c
else:
long_mask[mask > 127] = 1
long_mask[mask == 0] = 0
mask = long_mask
else:
mask = np.moveaxis(mask / (255.0 if mask.dtype == np.uint8 else 1), -1, 0).astype(np.float32)
else:
mask = np.expand_dims(mask / (255.0 if mask.dtype == np.uint8 else 1), 0).astype(np.float32)
return torch.from_numpy(mask)
class ToTensor(BasicTransform):
"""Convert image and mask to `torch.Tensor` and divide by 255 if image or mask are `uint8` type.
This transform is now removed from custom_albumentations. If you need it downgrade the library to version 0.5.2.
Args:
num_classes (int): only for segmentation
sigmoid (bool, optional): only for segmentation, transform mask to LongTensor or not.
normalize (dict, optional): dict with keys [mean, std] to pass it into torchvision.normalize
"""
def __init__(self, num_classes=1, sigmoid=True, normalize=None):
raise RuntimeError(
"`ToTensor` is obsolete and it was removed from custom_albumentations. Please use `ToTensorV2` instead - "
"https://albumentations.ai/docs/api_reference/pytorch/transforms/"
"#albumentations.pytorch.transforms.ToTensorV2. "
"\n\nIf you need `ToTensor` downgrade Albumentations to version 0.5.2."
)
class ToTensorV2(BasicTransform):
"""Convert image and mask to `torch.Tensor`. The numpy `HWC` image is converted to pytorch `CHW` tensor.
If the image is in `HW` format (grayscale image), it will be converted to pytorch `HW` tensor.
This is a simplified and improved version of the old `ToTensor`
transform (`ToTensor` was deprecated, and now it is not present in Albumentations. You should use `ToTensorV2`
instead).
Args:
transpose_mask (bool): If True and an input mask has three dimensions, this transform will transpose dimensions
so the shape `[height, width, num_channels]` becomes `[num_channels, height, width]`. The latter format is a
standard format for PyTorch Tensors. Default: False.
always_apply (bool): Indicates whether this transformation should be always applied. Default: True.
p (float): Probability of applying the transform. Default: 1.0.
"""
def __init__(self, transpose_mask=False, always_apply=True, p=1.0):
super(ToTensorV2, self).__init__(always_apply=always_apply, p=p)
self.transpose_mask = transpose_mask
@property
def targets(self):
return {"image": self.apply, "mask": self.apply_to_mask, "masks": self.apply_to_masks}
def apply(self, img, **params): # skipcq: PYL-W0613
if len(img.shape) not in [2, 3]:
raise ValueError("Albumentations only supports images in HW or HWC format")
if len(img.shape) == 2:
img = np.expand_dims(img, 2)
return torch.from_numpy(img.transpose(2, 0, 1))
def apply_to_mask(self, mask, **params): # skipcq: PYL-W0613
if self.transpose_mask and mask.ndim == 3:
mask = mask.transpose(2, 0, 1)
return torch.from_numpy(mask)
def apply_to_masks(self, masks, **params):
return [self.apply_to_mask(mask, **params) for mask in masks]
def get_transform_init_args_names(self):
return ("transpose_mask",)
def get_params_dependent_on_targets(self, params):
return {}