JasonSmithSO's picture
Upload 777 files
0034848 verified
"""
This file contains the definition of the SMPL model
It is adapted from opensource project GraphCMR (https://github.com/nkolot/GraphCMR/)
"""
from __future__ import division
import torch
import torch.nn as nn
import numpy as np
import scipy.sparse
try:
import cPickle as pickle
except ImportError:
import pickle
from custom_mesh_graphormer.utils.geometric_layers import rodrigues
import custom_mesh_graphormer.modeling.data.config as cfg
from comfy.model_management import get_torch_device
from wrapper_for_mps import sparse_to_dense
device = get_torch_device()
class SMPL(nn.Module):
def __init__(self, gender='neutral'):
super(SMPL, self).__init__()
if gender=='m':
model_file=cfg.SMPL_Male
elif gender=='f':
model_file=cfg.SMPL_Female
else:
model_file=cfg.SMPL_FILE
smpl_model = pickle.load(open(model_file, 'rb'), encoding='latin1')
J_regressor = smpl_model['J_regressor'].tocoo()
row = J_regressor.row
col = J_regressor.col
data = J_regressor.data
i = torch.LongTensor([row, col])
v = torch.FloatTensor(data)
J_regressor_shape = [24, 6890]
self.register_buffer('J_regressor', torch.sparse_coo_tensor(i, v, J_regressor_shape).to_dense())
self.register_buffer('weights', torch.FloatTensor(smpl_model['weights']))
self.register_buffer('posedirs', torch.FloatTensor(smpl_model['posedirs']))
self.register_buffer('v_template', torch.FloatTensor(smpl_model['v_template']))
self.register_buffer('shapedirs', torch.FloatTensor(np.array(smpl_model['shapedirs'])))
self.register_buffer('faces', torch.from_numpy(smpl_model['f'].astype(np.int64)))
self.register_buffer('kintree_table', torch.from_numpy(smpl_model['kintree_table'].astype(np.int64)))
id_to_col = {self.kintree_table[1, i].item(): i for i in range(self.kintree_table.shape[1])}
self.register_buffer('parent', torch.LongTensor([id_to_col[self.kintree_table[0, it].item()] for it in range(1, self.kintree_table.shape[1])]))
self.pose_shape = [24, 3]
self.beta_shape = [10]
self.translation_shape = [3]
self.pose = torch.zeros(self.pose_shape)
self.beta = torch.zeros(self.beta_shape)
self.translation = torch.zeros(self.translation_shape)
self.verts = None
self.J = None
self.R = None
J_regressor_extra = torch.from_numpy(np.load(cfg.JOINT_REGRESSOR_TRAIN_EXTRA)).float()
self.register_buffer('J_regressor_extra', J_regressor_extra)
self.joints_idx = cfg.JOINTS_IDX
J_regressor_h36m_correct = torch.from_numpy(np.load(cfg.JOINT_REGRESSOR_H36M_correct)).float()
self.register_buffer('J_regressor_h36m_correct', J_regressor_h36m_correct)
def forward(self, pose, beta):
device = pose.device
batch_size = pose.shape[0]
v_template = self.v_template[None, :]
shapedirs = self.shapedirs.view(-1,10)[None, :].expand(batch_size, -1, -1)
beta = beta[:, :, None]
v_shaped = torch.matmul(shapedirs, beta).view(-1, 6890, 3) + v_template
# batched sparse matmul not supported in pytorch
J = []
for i in range(batch_size):
J.append(torch.matmul(self.J_regressor, v_shaped[i]))
J = torch.stack(J, dim=0)
# input it rotmat: (bs,24,3,3)
if pose.ndimension() == 4:
R = pose
# input it rotmat: (bs,72)
elif pose.ndimension() == 2:
pose_cube = pose.view(-1, 3) # (batch_size * 24, 1, 3)
R = rodrigues(pose_cube).view(batch_size, 24, 3, 3)
R = R.view(batch_size, 24, 3, 3)
I_cube = torch.eye(3)[None, None, :].to(device)
# I_cube = torch.eye(3)[None, None, :].expand(theta.shape[0], R.shape[1]-1, -1, -1)
lrotmin = (R[:,1:,:] - I_cube).view(batch_size, -1)
posedirs = self.posedirs.view(-1,207)[None, :].expand(batch_size, -1, -1)
v_posed = v_shaped + torch.matmul(posedirs, lrotmin[:, :, None]).view(-1, 6890, 3)
J_ = J.clone()
J_[:, 1:, :] = J[:, 1:, :] - J[:, self.parent, :]
G_ = torch.cat([R, J_[:, :, :, None]], dim=-1)
pad_row = torch.FloatTensor([0,0,0,1]).to(device).view(1,1,1,4).expand(batch_size, 24, -1, -1)
G_ = torch.cat([G_, pad_row], dim=2)
G = [G_[:, 0].clone()]
for i in range(1, 24):
G.append(torch.matmul(G[self.parent[i-1]], G_[:, i, :, :]))
G = torch.stack(G, dim=1)
rest = torch.cat([J, torch.zeros(batch_size, 24, 1).to(device)], dim=2).view(batch_size, 24, 4, 1)
zeros = torch.zeros(batch_size, 24, 4, 3).to(device)
rest = torch.cat([zeros, rest], dim=-1)
rest = torch.matmul(G, rest)
G = G - rest
T = torch.matmul(self.weights, G.permute(1,0,2,3).contiguous().view(24,-1)).view(6890, batch_size, 4, 4).transpose(0,1)
rest_shape_h = torch.cat([v_posed, torch.ones_like(v_posed)[:, :, [0]]], dim=-1)
v = torch.matmul(T, rest_shape_h[:, :, :, None])[:, :, :3, 0]
return v
def get_joints(self, vertices):
"""
This method is used to get the joint locations from the SMPL mesh
Input:
vertices: size = (B, 6890, 3)
Output:
3D joints: size = (B, 38, 3)
"""
joints = torch.einsum('bik,ji->bjk', [vertices, self.J_regressor])
joints_extra = torch.einsum('bik,ji->bjk', [vertices, self.J_regressor_extra])
joints = torch.cat((joints, joints_extra), dim=1)
joints = joints[:, cfg.JOINTS_IDX]
return joints
def get_h36m_joints(self, vertices):
"""
This method is used to get the joint locations from the SMPL mesh
Input:
vertices: size = (B, 6890, 3)
Output:
3D joints: size = (B, 24, 3)
"""
joints = torch.einsum('bik,ji->bjk', [vertices, self.J_regressor_h36m_correct])
return joints
class SparseMM(torch.autograd.Function):
"""Redefine sparse @ dense matrix multiplication to enable backpropagation.
The builtin matrix multiplication operation does not support backpropagation in some cases.
"""
@staticmethod
def forward(ctx, sparse, dense):
ctx.req_grad = dense.requires_grad
ctx.save_for_backward(sparse)
return torch.matmul(sparse, dense)
@staticmethod
def backward(ctx, grad_output):
grad_input = None
sparse, = ctx.saved_tensors
if ctx.req_grad:
grad_input = torch.matmul(sparse.t(), grad_output)
return None, grad_input
def spmm(sparse, dense):
sparse = sparse.to(device)
dense = dense.to(device)
return SparseMM.apply(sparse, dense)
def scipy_to_pytorch(A, U, D):
"""Convert scipy sparse matrices to pytorch sparse matrix."""
ptU = []
ptD = []
for i in range(len(U)):
u = scipy.sparse.coo_matrix(U[i])
i = torch.LongTensor(np.array([u.row, u.col]))
v = torch.FloatTensor(u.data)
ptU.append(sparse_to_dense(torch.sparse_coo_tensor(i, v, u.shape)))
for i in range(len(D)):
d = scipy.sparse.coo_matrix(D[i])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(sparse_to_dense(torch.sparse_coo_tensor(i, v, d.shape)))
return ptU, ptD
def adjmat_sparse(adjmat, nsize=1):
"""Create row-normalized sparse graph adjacency matrix."""
adjmat = scipy.sparse.csr_matrix(adjmat)
if nsize > 1:
orig_adjmat = adjmat.copy()
for _ in range(1, nsize):
adjmat = adjmat * orig_adjmat
adjmat.data = np.ones_like(adjmat.data)
for i in range(adjmat.shape[0]):
adjmat[i,i] = 1
num_neighbors = np.array(1 / adjmat.sum(axis=-1))
adjmat = adjmat.multiply(num_neighbors)
adjmat = scipy.sparse.coo_matrix(adjmat)
row = adjmat.row
col = adjmat.col
data = adjmat.data
i = torch.LongTensor(np.array([row, col]))
v = torch.from_numpy(data).float()
adjmat = sparse_to_dense(torch.sparse_coo_tensor(i, v, adjmat.shape))
return adjmat
def get_graph_params(filename, nsize=1):
"""Load and process graph adjacency matrix and upsampling/downsampling matrices."""
data = np.load(filename, encoding='latin1', allow_pickle=True)
A = data['A']
U = data['U']
D = data['D']
U, D = scipy_to_pytorch(A, U, D)
A = [adjmat_sparse(a, nsize=nsize) for a in A]
return A, U, D
class Mesh(object):
"""Mesh object that is used for handling certain graph operations."""
def __init__(self, filename=cfg.SMPL_sampling_matrix,
num_downsampling=1, nsize=1, device=torch.device('cuda')):
self._A, self._U, self._D = get_graph_params(filename=filename, nsize=nsize)
# self._A = [a.to(device) for a in self._A]
self._U = [u.to(device) for u in self._U]
self._D = [d.to(device) for d in self._D]
self.num_downsampling = num_downsampling
# load template vertices from SMPL and normalize them
smpl = SMPL()
ref_vertices = smpl.v_template
center = 0.5*(ref_vertices.max(dim=0)[0] + ref_vertices.min(dim=0)[0])[None]
ref_vertices -= center
ref_vertices /= ref_vertices.abs().max().item()
self._ref_vertices = ref_vertices.to(device)
self.faces = smpl.faces.int().to(device)
# @property
# def adjmat(self):
# """Return the graph adjacency matrix at the specified subsampling level."""
# return self._A[self.num_downsampling].float()
@property
def ref_vertices(self):
"""Return the template vertices at the specified subsampling level."""
ref_vertices = self._ref_vertices
for i in range(self.num_downsampling):
ref_vertices = torch.spmm(self._D[i], ref_vertices)
return ref_vertices
def downsample(self, x, n1=0, n2=None):
"""Downsample mesh."""
if n2 is None:
n2 = self.num_downsampling
if x.ndimension() < 3:
for i in range(n1, n2):
x = spmm(self._D[i], x)
elif x.ndimension() == 3:
out = []
for i in range(x.shape[0]):
y = x[i]
for j in range(n1, n2):
y = spmm(self._D[j], y)
out.append(y)
x = torch.stack(out, dim=0)
return x
def upsample(self, x, n1=1, n2=0):
"""Upsample mesh."""
if x.ndimension() < 3:
for i in reversed(range(n2, n1)):
x = spmm(self._U[i], x)
elif x.ndimension() == 3:
out = []
for i in range(x.shape[0]):
y = x[i]
for j in reversed(range(n2, n1)):
y = spmm(self._U[j], y)
out.append(y)
x = torch.stack(out, dim=0)
return x