JasonSmithSO's picture
Upload 777 files
0034848 verified
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
Training and evaluation codes for
3D human body mesh reconstruction from an image
"""
from __future__ import absolute_import, division, print_function
import argparse
import os
import os.path as op
import code
import json
import time
import datetime
import torch
import torchvision.models as models
from torchvision.utils import make_grid
import gc
import numpy as np
import cv2
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer
from custom_mesh_graphormer.modeling.bert import Graphormer_Body_Network as Graphormer_Network
from custom_mesh_graphormer.modeling._smpl import SMPL, Mesh
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config
import custom_mesh_graphormer.modeling.data.config as cfg
from custom_mesh_graphormer.datasets.build import make_data_loader
from custom_mesh_graphormer.utils.logger import setup_logger
from custom_mesh_graphormer.utils.comm import synchronize, is_main_process, get_rank, get_world_size, all_gather
from custom_mesh_graphormer.utils.miscellaneous import mkdir, set_seed
from custom_mesh_graphormer.utils.metric_logger import AverageMeter, EvalMetricsLogger
from custom_mesh_graphormer.utils.renderer import Renderer, visualize_reconstruction, visualize_reconstruction_test
from custom_mesh_graphormer.utils.metric_pampjpe import reconstruction_error
from custom_mesh_graphormer.utils.geometric_layers import orthographic_projection
from comfy.model_management import get_torch_device
device = get_torch_device()
from azureml.core.run import Run
aml_run = Run.get_context()
def save_checkpoint(model, args, epoch, iteration, num_trial=10):
checkpoint_dir = op.join(args.output_dir, 'checkpoint-{}-{}'.format(
epoch, iteration))
if not is_main_process():
return checkpoint_dir
mkdir(checkpoint_dir)
model_to_save = model.module if hasattr(model, 'module') else model
for i in range(num_trial):
try:
torch.save(model_to_save, op.join(checkpoint_dir, 'model.bin'))
torch.save(model_to_save.state_dict(), op.join(checkpoint_dir, 'state_dict.bin'))
torch.save(args, op.join(checkpoint_dir, 'training_args.bin'))
logger.info("Save checkpoint to {}".format(checkpoint_dir))
break
except:
pass
else:
logger.info("Failed to save checkpoint after {} trails.".format(num_trial))
return checkpoint_dir
def save_scores(args, split, mpjpe, pampjpe, mpve):
eval_log = []
res = {}
res['mPJPE'] = mpjpe
res['PAmPJPE'] = pampjpe
res['mPVE'] = mpve
eval_log.append(res)
with open(op.join(args.output_dir, split+'_eval_logs.json'), 'w') as f:
json.dump(eval_log, f)
logger.info("Save eval scores to {}".format(args.output_dir))
return
def adjust_learning_rate(optimizer, epoch, args):
"""
Sets the learning rate to the initial LR decayed by x every y epochs
x = 0.1, y = args.num_train_epochs/2.0 = 100
"""
lr = args.lr * (0.1 ** (epoch // (args.num_train_epochs/2.0) ))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def mean_per_joint_position_error(pred, gt, has_3d_joints):
"""
Compute mPJPE
"""
gt = gt[has_3d_joints == 1]
gt = gt[:, :, :-1]
pred = pred[has_3d_joints == 1]
with torch.no_grad():
gt_pelvis = (gt[:, 2,:] + gt[:, 3,:]) / 2
gt = gt - gt_pelvis[:, None, :]
pred_pelvis = (pred[:, 2,:] + pred[:, 3,:]) / 2
pred = pred - pred_pelvis[:, None, :]
error = torch.sqrt( ((pred - gt) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
return error
def mean_per_vertex_error(pred, gt, has_smpl):
"""
Compute mPVE
"""
pred = pred[has_smpl == 1]
gt = gt[has_smpl == 1]
with torch.no_grad():
error = torch.sqrt( ((pred - gt) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
return error
def keypoint_2d_loss(criterion_keypoints, pred_keypoints_2d, gt_keypoints_2d, has_pose_2d):
"""
Compute 2D reprojection loss if 2D keypoint annotations are available.
The confidence (conf) is binary and indicates whether the keypoints exist or not.
"""
conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone()
loss = (conf * criterion_keypoints(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).mean()
return loss
def keypoint_3d_loss(criterion_keypoints, pred_keypoints_3d, gt_keypoints_3d, has_pose_3d, device):
"""
Compute 3D keypoint loss if 3D keypoint annotations are available.
"""
conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone()
gt_keypoints_3d = gt_keypoints_3d[:, :, :-1].clone()
gt_keypoints_3d = gt_keypoints_3d[has_pose_3d == 1]
conf = conf[has_pose_3d == 1]
pred_keypoints_3d = pred_keypoints_3d[has_pose_3d == 1]
if len(gt_keypoints_3d) > 0:
gt_pelvis = (gt_keypoints_3d[:, 2,:] + gt_keypoints_3d[:, 3,:]) / 2
gt_keypoints_3d = gt_keypoints_3d - gt_pelvis[:, None, :]
pred_pelvis = (pred_keypoints_3d[:, 2,:] + pred_keypoints_3d[:, 3,:]) / 2
pred_keypoints_3d = pred_keypoints_3d - pred_pelvis[:, None, :]
return (conf * criterion_keypoints(pred_keypoints_3d, gt_keypoints_3d)).mean()
else:
return torch.FloatTensor(1).fill_(0.).to(device)
def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl, device):
"""
Compute per-vertex loss if vertex annotations are available.
"""
pred_vertices_with_shape = pred_vertices[has_smpl == 1]
gt_vertices_with_shape = gt_vertices[has_smpl == 1]
if len(gt_vertices_with_shape) > 0:
return criterion_vertices(pred_vertices_with_shape, gt_vertices_with_shape)
else:
return torch.FloatTensor(1).fill_(0.).to(device)
def rectify_pose(pose):
pose = pose.copy()
R_mod = cv2.Rodrigues(np.array([np.pi, 0, 0]))[0]
R_root = cv2.Rodrigues(pose[:3])[0]
new_root = R_root.dot(R_mod)
pose[:3] = cv2.Rodrigues(new_root)[0].reshape(3)
return pose
def run(args, train_dataloader, val_dataloader, Graphormer_model, smpl, mesh_sampler, renderer):
smpl.eval()
max_iter = len(train_dataloader)
iters_per_epoch = max_iter // args.num_train_epochs
if iters_per_epoch<1000:
args.logging_steps = 500
optimizer = torch.optim.Adam(params=list(Graphormer_model.parameters()),
lr=args.lr,
betas=(0.9, 0.999),
weight_decay=0)
# define loss function (criterion) and optimizer
criterion_2d_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_vertices = torch.nn.L1Loss().to(device)
if args.distributed:
Graphormer_model = torch.nn.parallel.DistributedDataParallel(
Graphormer_model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
logger.info(
' '.join(
['Local rank: {o}', 'Max iteration: {a}', 'iters_per_epoch: {b}','num_train_epochs: {c}',]
).format(o=args.local_rank, a=max_iter, b=iters_per_epoch, c=args.num_train_epochs)
)
start_training_time = time.time()
end = time.time()
Graphormer_model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
log_losses = AverageMeter()
log_loss_2djoints = AverageMeter()
log_loss_3djoints = AverageMeter()
log_loss_vertices = AverageMeter()
log_eval_metrics = EvalMetricsLogger()
for iteration, (img_keys, images, annotations) in enumerate(train_dataloader):
# gc.collect()
# torch.cuda.empty_cache()
Graphormer_model.train()
iteration += 1
epoch = iteration // iters_per_epoch
batch_size = images.size(0)
adjust_learning_rate(optimizer, epoch, args)
data_time.update(time.time() - end)
images = images.to(device)
gt_2d_joints = annotations['joints_2d'].to(device)
gt_2d_joints = gt_2d_joints[:,cfg.J24_TO_J14,:]
has_2d_joints = annotations['has_2d_joints'].to(device)
gt_3d_joints = annotations['joints_3d'].to(device)
gt_3d_pelvis = gt_3d_joints[:,cfg.J24_NAME.index('Pelvis'),:3]
gt_3d_joints = gt_3d_joints[:,cfg.J24_TO_J14,:]
gt_3d_joints[:,:,:3] = gt_3d_joints[:,:,:3] - gt_3d_pelvis[:, None, :]
has_3d_joints = annotations['has_3d_joints'].to(device)
gt_pose = annotations['pose'].to(device)
gt_betas = annotations['betas'].to(device)
has_smpl = annotations['has_smpl'].to(device)
mjm_mask = annotations['mjm_mask'].to(device)
mvm_mask = annotations['mvm_mask'].to(device)
# generate simplified mesh
gt_vertices = smpl(gt_pose, gt_betas)
gt_vertices_sub2 = mesh_sampler.downsample(gt_vertices, n1=0, n2=2)
gt_vertices_sub = mesh_sampler.downsample(gt_vertices)
# normalize gt based on smpl's pelvis
gt_smpl_3d_joints = smpl.get_h36m_joints(gt_vertices)
gt_smpl_3d_pelvis = gt_smpl_3d_joints[:,cfg.H36M_J17_NAME.index('Pelvis'),:]
gt_vertices_sub2 = gt_vertices_sub2 - gt_smpl_3d_pelvis[:, None, :]
# prepare masks for mask vertex/joint modeling
mjm_mask_ = mjm_mask.expand(-1,-1,2051)
mvm_mask_ = mvm_mask.expand(-1,-1,2051)
meta_masks = torch.cat([mjm_mask_, mvm_mask_], dim=1)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub2, pred_vertices_sub, pred_vertices = Graphormer_model(images, smpl, mesh_sampler, meta_masks=meta_masks, is_train=True)
# normalize gt based on smpl's pelvis
gt_vertices_sub = gt_vertices_sub - gt_smpl_3d_pelvis[:, None, :]
gt_vertices = gt_vertices - gt_smpl_3d_pelvis[:, None, :]
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_smpl = smpl.get_h36m_joints(pred_vertices)
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl[:,cfg.H36M_J17_TO_J14,:]
# obtain 2d joints, which are projected from 3d joints of smpl mesh
pred_2d_joints_from_smpl = orthographic_projection(pred_3d_joints_from_smpl, pred_camera)
pred_2d_joints = orthographic_projection(pred_3d_joints, pred_camera)
# compute 3d joint loss (where the joints are directly output from transformer)
loss_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints, gt_3d_joints, has_3d_joints, args.device)
# compute 3d vertex loss
loss_vertices = ( args.vloss_w_sub2 * vertices_loss(criterion_vertices, pred_vertices_sub2, gt_vertices_sub2, has_smpl, args.device) + \
args.vloss_w_sub * vertices_loss(criterion_vertices, pred_vertices_sub, gt_vertices_sub, has_smpl, args.device) + \
args.vloss_w_full * vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl, args.device) )
# compute 3d joint loss (where the joints are regressed from full mesh)
loss_reg_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints_from_smpl, gt_3d_joints, has_3d_joints, args.device)
# compute 2d joint loss
loss_2d_joints = keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints, gt_2d_joints, has_2d_joints) + \
keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints_from_smpl, gt_2d_joints, has_2d_joints)
loss_3d_joints = loss_3d_joints + loss_reg_3d_joints
# we empirically use hyperparameters to balance difference losses
loss = args.joints_loss_weight*loss_3d_joints + \
args.vertices_loss_weight*loss_vertices + args.vertices_loss_weight*loss_2d_joints
# update logs
log_loss_2djoints.update(loss_2d_joints.item(), batch_size)
log_loss_3djoints.update(loss_3d_joints.item(), batch_size)
log_loss_vertices.update(loss_vertices.item(), batch_size)
log_losses.update(loss.item(), batch_size)
# back prop
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if iteration % args.logging_steps == 0 or iteration == max_iter:
eta_seconds = batch_time.avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.info(
' '.join(
['eta: {eta}', 'epoch: {ep}', 'iter: {iter}', 'max mem : {memory:.0f}',]
).format(eta=eta_string, ep=epoch, iter=iteration,
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0)
+ ' loss: {:.4f}, 2d joint loss: {:.4f}, 3d joint loss: {:.4f}, vertex loss: {:.4f}, compute: {:.4f}, data: {:.4f}, lr: {:.6f}'.format(
log_losses.avg, log_loss_2djoints.avg, log_loss_3djoints.avg, log_loss_vertices.avg, batch_time.avg, data_time.avg,
optimizer.param_groups[0]['lr'])
)
aml_run.log(name='Loss', value=float(log_losses.avg))
aml_run.log(name='3d joint Loss', value=float(log_loss_3djoints.avg))
aml_run.log(name='2d joint Loss', value=float(log_loss_2djoints.avg))
aml_run.log(name='vertex Loss', value=float(log_loss_vertices.avg))
visual_imgs = visualize_mesh( renderer,
annotations['ori_img'].detach(),
annotations['joints_2d'].detach(),
pred_vertices.detach(),
pred_camera.detach(),
pred_2d_joints_from_smpl.detach())
visual_imgs = visual_imgs.transpose(0,1)
visual_imgs = visual_imgs.transpose(1,2)
visual_imgs = np.asarray(visual_imgs)
if is_main_process()==True:
stamp = str(epoch) + '_' + str(iteration)
temp_fname = args.output_dir + 'visual_' + stamp + '.jpg'
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))
aml_run.log_image(name='visual results', path=temp_fname)
if iteration % iters_per_epoch == 0:
val_mPVE, val_mPJPE, val_PAmPJPE, val_count = run_validate(args, val_dataloader,
Graphormer_model,
criterion_keypoints,
criterion_vertices,
epoch,
smpl,
mesh_sampler)
aml_run.log(name='mPVE', value=float(1000*val_mPVE))
aml_run.log(name='mPJPE', value=float(1000*val_mPJPE))
aml_run.log(name='PAmPJPE', value=float(1000*val_PAmPJPE))
logger.info(
' '.join(['Validation', 'epoch: {ep}',]).format(ep=epoch)
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f}, Data Count: {:6.2f}'.format(1000*val_mPVE, 1000*val_mPJPE, 1000*val_PAmPJPE, val_count)
)
if val_PAmPJPE<log_eval_metrics.PAmPJPE:
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)
log_eval_metrics.update(val_mPVE, val_mPJPE, val_PAmPJPE, epoch)
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info('Total training time: {} ({:.4f} s / iter)'.format(
total_time_str, total_training_time / max_iter)
)
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)
logger.info(
' Best Results:'
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f}, at epoch {:6.2f}'.format(1000*log_eval_metrics.mPVE, 1000*log_eval_metrics.mPJPE, 1000*log_eval_metrics.PAmPJPE, log_eval_metrics.epoch)
)
def run_eval_general(args, val_dataloader, Graphormer_model, smpl, mesh_sampler):
smpl.eval()
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_vertices = torch.nn.L1Loss().to(device)
epoch = 0
if args.distributed:
Graphormer_model = torch.nn.parallel.DistributedDataParallel(
Graphormer_model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
Graphormer_model.eval()
val_mPVE, val_mPJPE, val_PAmPJPE, val_count = run_validate(args, val_dataloader,
Graphormer_model,
criterion_keypoints,
criterion_vertices,
epoch,
smpl,
mesh_sampler)
aml_run.log(name='mPVE', value=float(1000*val_mPVE))
aml_run.log(name='mPJPE', value=float(1000*val_mPJPE))
aml_run.log(name='PAmPJPE', value=float(1000*val_PAmPJPE))
logger.info(
' '.join(['Validation', 'epoch: {ep}',]).format(ep=epoch)
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f} '.format(1000*val_mPVE, 1000*val_mPJPE, 1000*val_PAmPJPE)
)
# checkpoint_dir = save_checkpoint(Graphormer_model, args, 0, 0)
return
def run_validate(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, smpl, mesh_sampler):
batch_time = AverageMeter()
mPVE = AverageMeter()
mPJPE = AverageMeter()
PAmPJPE = AverageMeter()
# switch to evaluate mode
Graphormer_model.eval()
smpl.eval()
with torch.no_grad():
# end = time.time()
for i, (img_keys, images, annotations) in enumerate(val_loader):
batch_size = images.size(0)
# compute output
images = images.to(device)
gt_3d_joints = annotations['joints_3d'].to(device)
gt_3d_pelvis = gt_3d_joints[:,cfg.J24_NAME.index('Pelvis'),:3]
gt_3d_joints = gt_3d_joints[:,cfg.J24_TO_J14,:]
gt_3d_joints[:,:,:3] = gt_3d_joints[:,:,:3] - gt_3d_pelvis[:, None, :]
has_3d_joints = annotations['has_3d_joints'].to(device)
gt_pose = annotations['pose'].to(device)
gt_betas = annotations['betas'].to(device)
has_smpl = annotations['has_smpl'].to(device)
# generate simplified mesh
gt_vertices = smpl(gt_pose, gt_betas)
gt_vertices_sub = mesh_sampler.downsample(gt_vertices)
gt_vertices_sub2 = mesh_sampler.downsample(gt_vertices_sub, n1=1, n2=2)
# normalize gt based on smpl pelvis
gt_smpl_3d_joints = smpl.get_h36m_joints(gt_vertices)
gt_smpl_3d_pelvis = gt_smpl_3d_joints[:,cfg.H36M_J17_NAME.index('Pelvis'),:]
gt_vertices_sub2 = gt_vertices_sub2 - gt_smpl_3d_pelvis[:, None, :]
gt_vertices = gt_vertices - gt_smpl_3d_pelvis[:, None, :]
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub2, pred_vertices_sub, pred_vertices = Graphormer_model(images, smpl, mesh_sampler)
# obtain 3d joints from full mesh
pred_3d_joints_from_smpl = smpl.get_h36m_joints(pred_vertices)
pred_3d_pelvis = pred_3d_joints_from_smpl[:,cfg.H36M_J17_NAME.index('Pelvis'),:]
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl[:,cfg.H36M_J17_TO_J14,:]
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl - pred_3d_pelvis[:, None, :]
pred_vertices = pred_vertices - pred_3d_pelvis[:, None, :]
# measure errors
error_vertices = mean_per_vertex_error(pred_vertices, gt_vertices, has_smpl)
error_joints = mean_per_joint_position_error(pred_3d_joints_from_smpl, gt_3d_joints, has_3d_joints)
error_joints_pa = reconstruction_error(pred_3d_joints_from_smpl.cpu().numpy(), gt_3d_joints[:,:,:3].cpu().numpy(), reduction=None)
if len(error_vertices)>0:
mPVE.update(np.mean(error_vertices), int(torch.sum(has_smpl)) )
if len(error_joints)>0:
mPJPE.update(np.mean(error_joints), int(torch.sum(has_3d_joints)) )
if len(error_joints_pa)>0:
PAmPJPE.update(np.mean(error_joints_pa), int(torch.sum(has_3d_joints)) )
val_mPVE = all_gather(float(mPVE.avg))
val_mPVE = sum(val_mPVE)/len(val_mPVE)
val_mPJPE = all_gather(float(mPJPE.avg))
val_mPJPE = sum(val_mPJPE)/len(val_mPJPE)
val_PAmPJPE = all_gather(float(PAmPJPE.avg))
val_PAmPJPE = sum(val_PAmPJPE)/len(val_PAmPJPE)
val_count = all_gather(float(mPVE.count))
val_count = sum(val_count)
return val_mPVE, val_mPJPE, val_PAmPJPE, val_count
def visualize_mesh( renderer,
images,
gt_keypoints_2d,
pred_vertices,
pred_camera,
pred_keypoints_2d):
"""Tensorboard logging."""
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
to_lsp = list(range(14))
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 10)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get LSP keypoints from the full list of keypoints
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
# Visualize reconstruction and detected pose
rend_img = visualize_reconstruction(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer)
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def visualize_mesh_test( renderer,
images,
gt_keypoints_2d,
pred_vertices,
pred_camera,
pred_keypoints_2d,
PAmPJPE_h36m_j14):
"""Tensorboard logging."""
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
to_lsp = list(range(14))
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 10)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get LSP keypoints from the full list of keypoints
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
score = PAmPJPE_h36m_j14[i]
# Visualize reconstruction and detected pose
rend_img = visualize_reconstruction_test(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer, score)
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def parse_args():
parser = argparse.ArgumentParser()
#########################################################
# Data related arguments
#########################################################
parser.add_argument("--data_dir", default='datasets', type=str, required=False,
help="Directory with all datasets, each in one subfolder")
parser.add_argument("--train_yaml", default='imagenet2012/train.yaml', type=str, required=False,
help="Yaml file with all data for training.")
parser.add_argument("--val_yaml", default='imagenet2012/test.yaml', type=str, required=False,
help="Yaml file with all data for validation.")
parser.add_argument("--num_workers", default=4, type=int,
help="Workers in dataloader.")
parser.add_argument("--img_scale_factor", default=1, type=int,
help="adjust image resolution.")
#########################################################
# Loading/saving checkpoints
#########################################################
parser.add_argument("--model_name_or_path", default='src/modeling/bert/bert-base-uncased/', type=str, required=False,
help="Path to pre-trained transformer model or model type.")
parser.add_argument("--resume_checkpoint", default=None, type=str, required=False,
help="Path to specific checkpoint for resume training.")
parser.add_argument("--output_dir", default='output/', type=str, required=False,
help="The output directory to save checkpoint and test results.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name.")
#########################################################
# Training parameters
#########################################################
parser.add_argument("--per_gpu_train_batch_size", default=30, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=30, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--lr', "--learning_rate", default=1e-4, type=float,
help="The initial lr.")
parser.add_argument("--num_train_epochs", default=200, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--vertices_loss_weight", default=100.0, type=float)
parser.add_argument("--joints_loss_weight", default=1000.0, type=float)
parser.add_argument("--vloss_w_full", default=0.33, type=float)
parser.add_argument("--vloss_w_sub", default=0.33, type=float)
parser.add_argument("--vloss_w_sub2", default=0.33, type=float)
parser.add_argument("--drop_out", default=0.1, type=float,
help="Drop out ratio in BERT.")
#########################################################
# Model architectures
#########################################################
parser.add_argument('-a', '--arch', default='hrnet-w64',
help='CNN backbone architecture: hrnet-w64, hrnet, resnet50')
parser.add_argument("--num_hidden_layers", default=4, type=int, required=False,
help="Update model config if given")
parser.add_argument("--hidden_size", default=-1, type=int, required=False,
help="Update model config if given")
parser.add_argument("--num_attention_heads", default=4, type=int, required=False,
help="Update model config if given. Note that the division of "
"hidden_size / num_attention_heads should be in integer.")
parser.add_argument("--intermediate_size", default=-1, type=int, required=False,
help="Update model config if given.")
parser.add_argument("--input_feat_dim", default='2051,512,128', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--hidden_feat_dim", default='1024,256,64', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--which_gcn", default='0,0,1', type=str,
help="which encoder block to have graph conv. Encoder1, Encoder2, Encoder3. Default: only Encoder3 has graph conv")
parser.add_argument("--mesh_type", default='body', type=str, help="body or hand")
parser.add_argument("--interm_size_scale", default=2, type=int)
#########################################################
# Others
#########################################################
parser.add_argument("--run_eval_only", default=False, action='store_true',)
parser.add_argument('--logging_steps', type=int, default=1000,
help="Log every X steps.")
parser.add_argument("--device", type=str, default='cuda',
help="cuda or cpu")
parser.add_argument('--seed', type=int, default=88,
help="random seed for initialization.")
parser.add_argument("--local_rank", type=int, default=0,
help="For distributed training.")
args = parser.parse_args()
return args
def main(args):
global logger
# Setup CUDA, GPU & distributed training
args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
os.environ['OMP_NUM_THREADS'] = str(args.num_workers)
print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS']))
args.distributed = args.num_gpus > 1
args.device = torch.device(args.device)
if args.distributed:
print("Init distributed training on local rank {} ({}), rank {}, world size {}".format(args.local_rank, int(os.environ["LOCAL_RANK"]), int(os.environ["NODE_RANK"]), args.num_gpus))
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend='nccl', init_method='env://'
)
local_rank = int(os.environ["LOCAL_RANK"])
args.device = torch.device("cuda", local_rank)
synchronize()
mkdir(args.output_dir)
logger = setup_logger("Graphormer", args.output_dir, get_rank())
set_seed(args.seed, args.num_gpus)
logger.info("Using {} GPUs".format(args.num_gpus))
# Mesh and SMPL utils
smpl = SMPL().to(args.device)
mesh_sampler = Mesh()
# Renderer for visualization
renderer = Renderer(faces=smpl.faces.cpu().numpy())
# Load model
trans_encoder = []
input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')]
hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')]
output_feat_dim = input_feat_dim[1:] + [3]
# which encoder block to have graph convs
which_blk_graph = [int(item) for item in args.which_gcn.split(',')]
if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint:
# if only run eval, load checkpoint
logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint))
_model = torch.load(args.resume_checkpoint)
else:
# init three transformer-encoder blocks in a loop
for i in range(len(output_feat_dim)):
config_class, model_class = BertConfig, Graphormer
config = config_class.from_pretrained(args.config_name if args.config_name \
else args.model_name_or_path)
config.output_attentions = False
config.hidden_dropout_prob = args.drop_out
config.img_feature_dim = input_feat_dim[i]
config.output_feature_dim = output_feat_dim[i]
args.hidden_size = hidden_feat_dim[i]
args.intermediate_size = int(args.hidden_size*args.interm_size_scale)
if which_blk_graph[i]==1:
config.graph_conv = True
logger.info("Add Graph Conv")
else:
config.graph_conv = False
config.mesh_type = args.mesh_type
# update model structure if specified in arguments
update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size']
for idx, param in enumerate(update_params):
arg_param = getattr(args, param)
config_param = getattr(config, param)
if arg_param > 0 and arg_param != config_param:
logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param))
setattr(config, param, arg_param)
# init a transformer encoder and append it to a list
assert config.hidden_size % config.num_attention_heads == 0
model = model_class(config=config)
logger.info("Init model from scratch.")
trans_encoder.append(model)
# init ImageNet pre-trained backbone model
if args.arch=='hrnet':
hrnet_yaml = 'models/hrnet/cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w40_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w40 model')
elif args.arch=='hrnet-w64':
hrnet_yaml = 'models/hrnet/cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w64_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w64 model')
else:
print("=> using pre-trained model '{}'".format(args.arch))
backbone = models.__dict__[args.arch](pretrained=True)
# remove the last fc layer
backbone = torch.nn.Sequential(*list(backbone.children())[:-2])
trans_encoder = torch.nn.Sequential(*trans_encoder)
total_params = sum(p.numel() for p in trans_encoder.parameters())
logger.info('Graphormer encoders total parameters: {}'.format(total_params))
backbone_total_params = sum(p.numel() for p in backbone.parameters())
logger.info('Backbone total parameters: {}'.format(backbone_total_params))
# build end-to-end Graphormer network (CNN backbone + multi-layer graphormer encoder)
_model = Graphormer_Network(args, config, backbone, trans_encoder, mesh_sampler)
if args.resume_checkpoint!=None and args.resume_checkpoint!='None':
# for fine-tuning or resume training or inference, load weights from checkpoint
logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint))
# workaround approach to load sparse tensor in graph conv.
states = torch.load(args.resume_checkpoint)
# states = checkpoint_loaded.state_dict()
for k, v in states.items():
states[k] = v.cpu()
# del checkpoint_loaded
_model.load_state_dict(states, strict=False)
del states
gc.collect()
torch.cuda.empty_cache()
_model.to(args.device)
logger.info("Training parameters %s", args)
if args.run_eval_only==True:
val_dataloader = make_data_loader(args, args.val_yaml,
args.distributed, is_train=False, scale_factor=args.img_scale_factor)
run_eval_general(args, val_dataloader, _model, smpl, mesh_sampler)
else:
train_dataloader = make_data_loader(args, args.train_yaml,
args.distributed, is_train=True, scale_factor=args.img_scale_factor)
val_dataloader = make_data_loader(args, args.val_yaml,
args.distributed, is_train=False, scale_factor=args.img_scale_factor)
run(args, train_dataloader, val_dataloader, _model, smpl, mesh_sampler, renderer)
if __name__ == "__main__":
args = parse_args()
main(args)