Spaces:
Configuration error
Configuration error
""" | |
Copyright (c) Microsoft Corporation. | |
Licensed under the MIT license. | |
Training and evaluation codes for | |
3D human body mesh reconstruction from an image | |
""" | |
from __future__ import absolute_import, division, print_function | |
import argparse | |
import os | |
import os.path as op | |
import code | |
import json | |
import time | |
import datetime | |
import torch | |
import torchvision.models as models | |
from torchvision.utils import make_grid | |
import gc | |
import numpy as np | |
import cv2 | |
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer | |
from custom_mesh_graphormer.modeling.bert import Graphormer_Body_Network as Graphormer_Network | |
from custom_mesh_graphormer.modeling._smpl import SMPL, Mesh | |
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat | |
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config | |
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config | |
import custom_mesh_graphormer.modeling.data.config as cfg | |
from custom_mesh_graphormer.datasets.build import make_data_loader | |
from custom_mesh_graphormer.utils.logger import setup_logger | |
from custom_mesh_graphormer.utils.comm import synchronize, is_main_process, get_rank, get_world_size, all_gather | |
from custom_mesh_graphormer.utils.miscellaneous import mkdir, set_seed | |
from custom_mesh_graphormer.utils.metric_logger import AverageMeter, EvalMetricsLogger | |
from custom_mesh_graphormer.utils.renderer import Renderer, visualize_reconstruction, visualize_reconstruction_test | |
from custom_mesh_graphormer.utils.metric_pampjpe import reconstruction_error | |
from custom_mesh_graphormer.utils.geometric_layers import orthographic_projection | |
from comfy.model_management import get_torch_device | |
device = get_torch_device() | |
from azureml.core.run import Run | |
aml_run = Run.get_context() | |
def save_checkpoint(model, args, epoch, iteration, num_trial=10): | |
checkpoint_dir = op.join(args.output_dir, 'checkpoint-{}-{}'.format( | |
epoch, iteration)) | |
if not is_main_process(): | |
return checkpoint_dir | |
mkdir(checkpoint_dir) | |
model_to_save = model.module if hasattr(model, 'module') else model | |
for i in range(num_trial): | |
try: | |
torch.save(model_to_save, op.join(checkpoint_dir, 'model.bin')) | |
torch.save(model_to_save.state_dict(), op.join(checkpoint_dir, 'state_dict.bin')) | |
torch.save(args, op.join(checkpoint_dir, 'training_args.bin')) | |
logger.info("Save checkpoint to {}".format(checkpoint_dir)) | |
break | |
except: | |
pass | |
else: | |
logger.info("Failed to save checkpoint after {} trails.".format(num_trial)) | |
return checkpoint_dir | |
def save_scores(args, split, mpjpe, pampjpe, mpve): | |
eval_log = [] | |
res = {} | |
res['mPJPE'] = mpjpe | |
res['PAmPJPE'] = pampjpe | |
res['mPVE'] = mpve | |
eval_log.append(res) | |
with open(op.join(args.output_dir, split+'_eval_logs.json'), 'w') as f: | |
json.dump(eval_log, f) | |
logger.info("Save eval scores to {}".format(args.output_dir)) | |
return | |
def adjust_learning_rate(optimizer, epoch, args): | |
""" | |
Sets the learning rate to the initial LR decayed by x every y epochs | |
x = 0.1, y = args.num_train_epochs/2.0 = 100 | |
""" | |
lr = args.lr * (0.1 ** (epoch // (args.num_train_epochs/2.0) )) | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
def mean_per_joint_position_error(pred, gt, has_3d_joints): | |
""" | |
Compute mPJPE | |
""" | |
gt = gt[has_3d_joints == 1] | |
gt = gt[:, :, :-1] | |
pred = pred[has_3d_joints == 1] | |
with torch.no_grad(): | |
gt_pelvis = (gt[:, 2,:] + gt[:, 3,:]) / 2 | |
gt = gt - gt_pelvis[:, None, :] | |
pred_pelvis = (pred[:, 2,:] + pred[:, 3,:]) / 2 | |
pred = pred - pred_pelvis[:, None, :] | |
error = torch.sqrt( ((pred - gt) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy() | |
return error | |
def mean_per_vertex_error(pred, gt, has_smpl): | |
""" | |
Compute mPVE | |
""" | |
pred = pred[has_smpl == 1] | |
gt = gt[has_smpl == 1] | |
with torch.no_grad(): | |
error = torch.sqrt( ((pred - gt) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy() | |
return error | |
def keypoint_2d_loss(criterion_keypoints, pred_keypoints_2d, gt_keypoints_2d, has_pose_2d): | |
""" | |
Compute 2D reprojection loss if 2D keypoint annotations are available. | |
The confidence (conf) is binary and indicates whether the keypoints exist or not. | |
""" | |
conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone() | |
loss = (conf * criterion_keypoints(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).mean() | |
return loss | |
def keypoint_3d_loss(criterion_keypoints, pred_keypoints_3d, gt_keypoints_3d, has_pose_3d, device): | |
""" | |
Compute 3D keypoint loss if 3D keypoint annotations are available. | |
""" | |
conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone() | |
gt_keypoints_3d = gt_keypoints_3d[:, :, :-1].clone() | |
gt_keypoints_3d = gt_keypoints_3d[has_pose_3d == 1] | |
conf = conf[has_pose_3d == 1] | |
pred_keypoints_3d = pred_keypoints_3d[has_pose_3d == 1] | |
if len(gt_keypoints_3d) > 0: | |
gt_pelvis = (gt_keypoints_3d[:, 2,:] + gt_keypoints_3d[:, 3,:]) / 2 | |
gt_keypoints_3d = gt_keypoints_3d - gt_pelvis[:, None, :] | |
pred_pelvis = (pred_keypoints_3d[:, 2,:] + pred_keypoints_3d[:, 3,:]) / 2 | |
pred_keypoints_3d = pred_keypoints_3d - pred_pelvis[:, None, :] | |
return (conf * criterion_keypoints(pred_keypoints_3d, gt_keypoints_3d)).mean() | |
else: | |
return torch.FloatTensor(1).fill_(0.).to(device) | |
def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl, device): | |
""" | |
Compute per-vertex loss if vertex annotations are available. | |
""" | |
pred_vertices_with_shape = pred_vertices[has_smpl == 1] | |
gt_vertices_with_shape = gt_vertices[has_smpl == 1] | |
if len(gt_vertices_with_shape) > 0: | |
return criterion_vertices(pred_vertices_with_shape, gt_vertices_with_shape) | |
else: | |
return torch.FloatTensor(1).fill_(0.).to(device) | |
def rectify_pose(pose): | |
pose = pose.copy() | |
R_mod = cv2.Rodrigues(np.array([np.pi, 0, 0]))[0] | |
R_root = cv2.Rodrigues(pose[:3])[0] | |
new_root = R_root.dot(R_mod) | |
pose[:3] = cv2.Rodrigues(new_root)[0].reshape(3) | |
return pose | |
def run(args, train_dataloader, val_dataloader, Graphormer_model, smpl, mesh_sampler, renderer): | |
smpl.eval() | |
max_iter = len(train_dataloader) | |
iters_per_epoch = max_iter // args.num_train_epochs | |
if iters_per_epoch<1000: | |
args.logging_steps = 500 | |
optimizer = torch.optim.Adam(params=list(Graphormer_model.parameters()), | |
lr=args.lr, | |
betas=(0.9, 0.999), | |
weight_decay=0) | |
# define loss function (criterion) and optimizer | |
criterion_2d_keypoints = torch.nn.MSELoss(reduction='none').to(device) | |
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device) | |
criterion_vertices = torch.nn.L1Loss().to(device) | |
if args.distributed: | |
Graphormer_model = torch.nn.parallel.DistributedDataParallel( | |
Graphormer_model, device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
find_unused_parameters=True, | |
) | |
logger.info( | |
' '.join( | |
['Local rank: {o}', 'Max iteration: {a}', 'iters_per_epoch: {b}','num_train_epochs: {c}',] | |
).format(o=args.local_rank, a=max_iter, b=iters_per_epoch, c=args.num_train_epochs) | |
) | |
start_training_time = time.time() | |
end = time.time() | |
Graphormer_model.train() | |
batch_time = AverageMeter() | |
data_time = AverageMeter() | |
log_losses = AverageMeter() | |
log_loss_2djoints = AverageMeter() | |
log_loss_3djoints = AverageMeter() | |
log_loss_vertices = AverageMeter() | |
log_eval_metrics = EvalMetricsLogger() | |
for iteration, (img_keys, images, annotations) in enumerate(train_dataloader): | |
# gc.collect() | |
# torch.cuda.empty_cache() | |
Graphormer_model.train() | |
iteration += 1 | |
epoch = iteration // iters_per_epoch | |
batch_size = images.size(0) | |
adjust_learning_rate(optimizer, epoch, args) | |
data_time.update(time.time() - end) | |
images = images.to(device) | |
gt_2d_joints = annotations['joints_2d'].to(device) | |
gt_2d_joints = gt_2d_joints[:,cfg.J24_TO_J14,:] | |
has_2d_joints = annotations['has_2d_joints'].to(device) | |
gt_3d_joints = annotations['joints_3d'].to(device) | |
gt_3d_pelvis = gt_3d_joints[:,cfg.J24_NAME.index('Pelvis'),:3] | |
gt_3d_joints = gt_3d_joints[:,cfg.J24_TO_J14,:] | |
gt_3d_joints[:,:,:3] = gt_3d_joints[:,:,:3] - gt_3d_pelvis[:, None, :] | |
has_3d_joints = annotations['has_3d_joints'].to(device) | |
gt_pose = annotations['pose'].to(device) | |
gt_betas = annotations['betas'].to(device) | |
has_smpl = annotations['has_smpl'].to(device) | |
mjm_mask = annotations['mjm_mask'].to(device) | |
mvm_mask = annotations['mvm_mask'].to(device) | |
# generate simplified mesh | |
gt_vertices = smpl(gt_pose, gt_betas) | |
gt_vertices_sub2 = mesh_sampler.downsample(gt_vertices, n1=0, n2=2) | |
gt_vertices_sub = mesh_sampler.downsample(gt_vertices) | |
# normalize gt based on smpl's pelvis | |
gt_smpl_3d_joints = smpl.get_h36m_joints(gt_vertices) | |
gt_smpl_3d_pelvis = gt_smpl_3d_joints[:,cfg.H36M_J17_NAME.index('Pelvis'),:] | |
gt_vertices_sub2 = gt_vertices_sub2 - gt_smpl_3d_pelvis[:, None, :] | |
# prepare masks for mask vertex/joint modeling | |
mjm_mask_ = mjm_mask.expand(-1,-1,2051) | |
mvm_mask_ = mvm_mask.expand(-1,-1,2051) | |
meta_masks = torch.cat([mjm_mask_, mvm_mask_], dim=1) | |
# forward-pass | |
pred_camera, pred_3d_joints, pred_vertices_sub2, pred_vertices_sub, pred_vertices = Graphormer_model(images, smpl, mesh_sampler, meta_masks=meta_masks, is_train=True) | |
# normalize gt based on smpl's pelvis | |
gt_vertices_sub = gt_vertices_sub - gt_smpl_3d_pelvis[:, None, :] | |
gt_vertices = gt_vertices - gt_smpl_3d_pelvis[:, None, :] | |
# obtain 3d joints, which are regressed from the full mesh | |
pred_3d_joints_from_smpl = smpl.get_h36m_joints(pred_vertices) | |
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl[:,cfg.H36M_J17_TO_J14,:] | |
# obtain 2d joints, which are projected from 3d joints of smpl mesh | |
pred_2d_joints_from_smpl = orthographic_projection(pred_3d_joints_from_smpl, pred_camera) | |
pred_2d_joints = orthographic_projection(pred_3d_joints, pred_camera) | |
# compute 3d joint loss (where the joints are directly output from transformer) | |
loss_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints, gt_3d_joints, has_3d_joints, args.device) | |
# compute 3d vertex loss | |
loss_vertices = ( args.vloss_w_sub2 * vertices_loss(criterion_vertices, pred_vertices_sub2, gt_vertices_sub2, has_smpl, args.device) + \ | |
args.vloss_w_sub * vertices_loss(criterion_vertices, pred_vertices_sub, gt_vertices_sub, has_smpl, args.device) + \ | |
args.vloss_w_full * vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl, args.device) ) | |
# compute 3d joint loss (where the joints are regressed from full mesh) | |
loss_reg_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints_from_smpl, gt_3d_joints, has_3d_joints, args.device) | |
# compute 2d joint loss | |
loss_2d_joints = keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints, gt_2d_joints, has_2d_joints) + \ | |
keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints_from_smpl, gt_2d_joints, has_2d_joints) | |
loss_3d_joints = loss_3d_joints + loss_reg_3d_joints | |
# we empirically use hyperparameters to balance difference losses | |
loss = args.joints_loss_weight*loss_3d_joints + \ | |
args.vertices_loss_weight*loss_vertices + args.vertices_loss_weight*loss_2d_joints | |
# update logs | |
log_loss_2djoints.update(loss_2d_joints.item(), batch_size) | |
log_loss_3djoints.update(loss_3d_joints.item(), batch_size) | |
log_loss_vertices.update(loss_vertices.item(), batch_size) | |
log_losses.update(loss.item(), batch_size) | |
# back prop | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
batch_time.update(time.time() - end) | |
end = time.time() | |
if iteration % args.logging_steps == 0 or iteration == max_iter: | |
eta_seconds = batch_time.avg * (max_iter - iteration) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
logger.info( | |
' '.join( | |
['eta: {eta}', 'epoch: {ep}', 'iter: {iter}', 'max mem : {memory:.0f}',] | |
).format(eta=eta_string, ep=epoch, iter=iteration, | |
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) | |
+ ' loss: {:.4f}, 2d joint loss: {:.4f}, 3d joint loss: {:.4f}, vertex loss: {:.4f}, compute: {:.4f}, data: {:.4f}, lr: {:.6f}'.format( | |
log_losses.avg, log_loss_2djoints.avg, log_loss_3djoints.avg, log_loss_vertices.avg, batch_time.avg, data_time.avg, | |
optimizer.param_groups[0]['lr']) | |
) | |
aml_run.log(name='Loss', value=float(log_losses.avg)) | |
aml_run.log(name='3d joint Loss', value=float(log_loss_3djoints.avg)) | |
aml_run.log(name='2d joint Loss', value=float(log_loss_2djoints.avg)) | |
aml_run.log(name='vertex Loss', value=float(log_loss_vertices.avg)) | |
visual_imgs = visualize_mesh( renderer, | |
annotations['ori_img'].detach(), | |
annotations['joints_2d'].detach(), | |
pred_vertices.detach(), | |
pred_camera.detach(), | |
pred_2d_joints_from_smpl.detach()) | |
visual_imgs = visual_imgs.transpose(0,1) | |
visual_imgs = visual_imgs.transpose(1,2) | |
visual_imgs = np.asarray(visual_imgs) | |
if is_main_process()==True: | |
stamp = str(epoch) + '_' + str(iteration) | |
temp_fname = args.output_dir + 'visual_' + stamp + '.jpg' | |
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255)) | |
aml_run.log_image(name='visual results', path=temp_fname) | |
if iteration % iters_per_epoch == 0: | |
val_mPVE, val_mPJPE, val_PAmPJPE, val_count = run_validate(args, val_dataloader, | |
Graphormer_model, | |
criterion_keypoints, | |
criterion_vertices, | |
epoch, | |
smpl, | |
mesh_sampler) | |
aml_run.log(name='mPVE', value=float(1000*val_mPVE)) | |
aml_run.log(name='mPJPE', value=float(1000*val_mPJPE)) | |
aml_run.log(name='PAmPJPE', value=float(1000*val_PAmPJPE)) | |
logger.info( | |
' '.join(['Validation', 'epoch: {ep}',]).format(ep=epoch) | |
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f}, Data Count: {:6.2f}'.format(1000*val_mPVE, 1000*val_mPJPE, 1000*val_PAmPJPE, val_count) | |
) | |
if val_PAmPJPE<log_eval_metrics.PAmPJPE: | |
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration) | |
log_eval_metrics.update(val_mPVE, val_mPJPE, val_PAmPJPE, epoch) | |
total_training_time = time.time() - start_training_time | |
total_time_str = str(datetime.timedelta(seconds=total_training_time)) | |
logger.info('Total training time: {} ({:.4f} s / iter)'.format( | |
total_time_str, total_training_time / max_iter) | |
) | |
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration) | |
logger.info( | |
' Best Results:' | |
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f}, at epoch {:6.2f}'.format(1000*log_eval_metrics.mPVE, 1000*log_eval_metrics.mPJPE, 1000*log_eval_metrics.PAmPJPE, log_eval_metrics.epoch) | |
) | |
def run_eval_general(args, val_dataloader, Graphormer_model, smpl, mesh_sampler): | |
smpl.eval() | |
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device) | |
criterion_vertices = torch.nn.L1Loss().to(device) | |
epoch = 0 | |
if args.distributed: | |
Graphormer_model = torch.nn.parallel.DistributedDataParallel( | |
Graphormer_model, device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
find_unused_parameters=True, | |
) | |
Graphormer_model.eval() | |
val_mPVE, val_mPJPE, val_PAmPJPE, val_count = run_validate(args, val_dataloader, | |
Graphormer_model, | |
criterion_keypoints, | |
criterion_vertices, | |
epoch, | |
smpl, | |
mesh_sampler) | |
aml_run.log(name='mPVE', value=float(1000*val_mPVE)) | |
aml_run.log(name='mPJPE', value=float(1000*val_mPJPE)) | |
aml_run.log(name='PAmPJPE', value=float(1000*val_PAmPJPE)) | |
logger.info( | |
' '.join(['Validation', 'epoch: {ep}',]).format(ep=epoch) | |
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f} '.format(1000*val_mPVE, 1000*val_mPJPE, 1000*val_PAmPJPE) | |
) | |
# checkpoint_dir = save_checkpoint(Graphormer_model, args, 0, 0) | |
return | |
def run_validate(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, smpl, mesh_sampler): | |
batch_time = AverageMeter() | |
mPVE = AverageMeter() | |
mPJPE = AverageMeter() | |
PAmPJPE = AverageMeter() | |
# switch to evaluate mode | |
Graphormer_model.eval() | |
smpl.eval() | |
with torch.no_grad(): | |
# end = time.time() | |
for i, (img_keys, images, annotations) in enumerate(val_loader): | |
batch_size = images.size(0) | |
# compute output | |
images = images.to(device) | |
gt_3d_joints = annotations['joints_3d'].to(device) | |
gt_3d_pelvis = gt_3d_joints[:,cfg.J24_NAME.index('Pelvis'),:3] | |
gt_3d_joints = gt_3d_joints[:,cfg.J24_TO_J14,:] | |
gt_3d_joints[:,:,:3] = gt_3d_joints[:,:,:3] - gt_3d_pelvis[:, None, :] | |
has_3d_joints = annotations['has_3d_joints'].to(device) | |
gt_pose = annotations['pose'].to(device) | |
gt_betas = annotations['betas'].to(device) | |
has_smpl = annotations['has_smpl'].to(device) | |
# generate simplified mesh | |
gt_vertices = smpl(gt_pose, gt_betas) | |
gt_vertices_sub = mesh_sampler.downsample(gt_vertices) | |
gt_vertices_sub2 = mesh_sampler.downsample(gt_vertices_sub, n1=1, n2=2) | |
# normalize gt based on smpl pelvis | |
gt_smpl_3d_joints = smpl.get_h36m_joints(gt_vertices) | |
gt_smpl_3d_pelvis = gt_smpl_3d_joints[:,cfg.H36M_J17_NAME.index('Pelvis'),:] | |
gt_vertices_sub2 = gt_vertices_sub2 - gt_smpl_3d_pelvis[:, None, :] | |
gt_vertices = gt_vertices - gt_smpl_3d_pelvis[:, None, :] | |
# forward-pass | |
pred_camera, pred_3d_joints, pred_vertices_sub2, pred_vertices_sub, pred_vertices = Graphormer_model(images, smpl, mesh_sampler) | |
# obtain 3d joints from full mesh | |
pred_3d_joints_from_smpl = smpl.get_h36m_joints(pred_vertices) | |
pred_3d_pelvis = pred_3d_joints_from_smpl[:,cfg.H36M_J17_NAME.index('Pelvis'),:] | |
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl[:,cfg.H36M_J17_TO_J14,:] | |
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl - pred_3d_pelvis[:, None, :] | |
pred_vertices = pred_vertices - pred_3d_pelvis[:, None, :] | |
# measure errors | |
error_vertices = mean_per_vertex_error(pred_vertices, gt_vertices, has_smpl) | |
error_joints = mean_per_joint_position_error(pred_3d_joints_from_smpl, gt_3d_joints, has_3d_joints) | |
error_joints_pa = reconstruction_error(pred_3d_joints_from_smpl.cpu().numpy(), gt_3d_joints[:,:,:3].cpu().numpy(), reduction=None) | |
if len(error_vertices)>0: | |
mPVE.update(np.mean(error_vertices), int(torch.sum(has_smpl)) ) | |
if len(error_joints)>0: | |
mPJPE.update(np.mean(error_joints), int(torch.sum(has_3d_joints)) ) | |
if len(error_joints_pa)>0: | |
PAmPJPE.update(np.mean(error_joints_pa), int(torch.sum(has_3d_joints)) ) | |
val_mPVE = all_gather(float(mPVE.avg)) | |
val_mPVE = sum(val_mPVE)/len(val_mPVE) | |
val_mPJPE = all_gather(float(mPJPE.avg)) | |
val_mPJPE = sum(val_mPJPE)/len(val_mPJPE) | |
val_PAmPJPE = all_gather(float(PAmPJPE.avg)) | |
val_PAmPJPE = sum(val_PAmPJPE)/len(val_PAmPJPE) | |
val_count = all_gather(float(mPVE.count)) | |
val_count = sum(val_count) | |
return val_mPVE, val_mPJPE, val_PAmPJPE, val_count | |
def visualize_mesh( renderer, | |
images, | |
gt_keypoints_2d, | |
pred_vertices, | |
pred_camera, | |
pred_keypoints_2d): | |
"""Tensorboard logging.""" | |
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy() | |
to_lsp = list(range(14)) | |
rend_imgs = [] | |
batch_size = pred_vertices.shape[0] | |
# Do visualization for the first 6 images of the batch | |
for i in range(min(batch_size, 10)): | |
img = images[i].cpu().numpy().transpose(1,2,0) | |
# Get LSP keypoints from the full list of keypoints | |
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp] | |
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp] | |
# Get predict vertices for the particular example | |
vertices = pred_vertices[i].cpu().numpy() | |
cam = pred_camera[i].cpu().numpy() | |
# Visualize reconstruction and detected pose | |
rend_img = visualize_reconstruction(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer) | |
rend_img = rend_img.transpose(2,0,1) | |
rend_imgs.append(torch.from_numpy(rend_img)) | |
rend_imgs = make_grid(rend_imgs, nrow=1) | |
return rend_imgs | |
def visualize_mesh_test( renderer, | |
images, | |
gt_keypoints_2d, | |
pred_vertices, | |
pred_camera, | |
pred_keypoints_2d, | |
PAmPJPE_h36m_j14): | |
"""Tensorboard logging.""" | |
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy() | |
to_lsp = list(range(14)) | |
rend_imgs = [] | |
batch_size = pred_vertices.shape[0] | |
# Do visualization for the first 6 images of the batch | |
for i in range(min(batch_size, 10)): | |
img = images[i].cpu().numpy().transpose(1,2,0) | |
# Get LSP keypoints from the full list of keypoints | |
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp] | |
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp] | |
# Get predict vertices for the particular example | |
vertices = pred_vertices[i].cpu().numpy() | |
cam = pred_camera[i].cpu().numpy() | |
score = PAmPJPE_h36m_j14[i] | |
# Visualize reconstruction and detected pose | |
rend_img = visualize_reconstruction_test(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer, score) | |
rend_img = rend_img.transpose(2,0,1) | |
rend_imgs.append(torch.from_numpy(rend_img)) | |
rend_imgs = make_grid(rend_imgs, nrow=1) | |
return rend_imgs | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
######################################################### | |
# Data related arguments | |
######################################################### | |
parser.add_argument("--data_dir", default='datasets', type=str, required=False, | |
help="Directory with all datasets, each in one subfolder") | |
parser.add_argument("--train_yaml", default='imagenet2012/train.yaml', type=str, required=False, | |
help="Yaml file with all data for training.") | |
parser.add_argument("--val_yaml", default='imagenet2012/test.yaml', type=str, required=False, | |
help="Yaml file with all data for validation.") | |
parser.add_argument("--num_workers", default=4, type=int, | |
help="Workers in dataloader.") | |
parser.add_argument("--img_scale_factor", default=1, type=int, | |
help="adjust image resolution.") | |
######################################################### | |
# Loading/saving checkpoints | |
######################################################### | |
parser.add_argument("--model_name_or_path", default='src/modeling/bert/bert-base-uncased/', type=str, required=False, | |
help="Path to pre-trained transformer model or model type.") | |
parser.add_argument("--resume_checkpoint", default=None, type=str, required=False, | |
help="Path to specific checkpoint for resume training.") | |
parser.add_argument("--output_dir", default='output/', type=str, required=False, | |
help="The output directory to save checkpoint and test results.") | |
parser.add_argument("--config_name", default="", type=str, | |
help="Pretrained config name or path if not the same as model_name.") | |
######################################################### | |
# Training parameters | |
######################################################### | |
parser.add_argument("--per_gpu_train_batch_size", default=30, type=int, | |
help="Batch size per GPU/CPU for training.") | |
parser.add_argument("--per_gpu_eval_batch_size", default=30, type=int, | |
help="Batch size per GPU/CPU for evaluation.") | |
parser.add_argument('--lr', "--learning_rate", default=1e-4, type=float, | |
help="The initial lr.") | |
parser.add_argument("--num_train_epochs", default=200, type=int, | |
help="Total number of training epochs to perform.") | |
parser.add_argument("--vertices_loss_weight", default=100.0, type=float) | |
parser.add_argument("--joints_loss_weight", default=1000.0, type=float) | |
parser.add_argument("--vloss_w_full", default=0.33, type=float) | |
parser.add_argument("--vloss_w_sub", default=0.33, type=float) | |
parser.add_argument("--vloss_w_sub2", default=0.33, type=float) | |
parser.add_argument("--drop_out", default=0.1, type=float, | |
help="Drop out ratio in BERT.") | |
######################################################### | |
# Model architectures | |
######################################################### | |
parser.add_argument('-a', '--arch', default='hrnet-w64', | |
help='CNN backbone architecture: hrnet-w64, hrnet, resnet50') | |
parser.add_argument("--num_hidden_layers", default=4, type=int, required=False, | |
help="Update model config if given") | |
parser.add_argument("--hidden_size", default=-1, type=int, required=False, | |
help="Update model config if given") | |
parser.add_argument("--num_attention_heads", default=4, type=int, required=False, | |
help="Update model config if given. Note that the division of " | |
"hidden_size / num_attention_heads should be in integer.") | |
parser.add_argument("--intermediate_size", default=-1, type=int, required=False, | |
help="Update model config if given.") | |
parser.add_argument("--input_feat_dim", default='2051,512,128', type=str, | |
help="The Image Feature Dimension.") | |
parser.add_argument("--hidden_feat_dim", default='1024,256,64', type=str, | |
help="The Image Feature Dimension.") | |
parser.add_argument("--which_gcn", default='0,0,1', type=str, | |
help="which encoder block to have graph conv. Encoder1, Encoder2, Encoder3. Default: only Encoder3 has graph conv") | |
parser.add_argument("--mesh_type", default='body', type=str, help="body or hand") | |
parser.add_argument("--interm_size_scale", default=2, type=int) | |
######################################################### | |
# Others | |
######################################################### | |
parser.add_argument("--run_eval_only", default=False, action='store_true',) | |
parser.add_argument('--logging_steps', type=int, default=1000, | |
help="Log every X steps.") | |
parser.add_argument("--device", type=str, default='cuda', | |
help="cuda or cpu") | |
parser.add_argument('--seed', type=int, default=88, | |
help="random seed for initialization.") | |
parser.add_argument("--local_rank", type=int, default=0, | |
help="For distributed training.") | |
args = parser.parse_args() | |
return args | |
def main(args): | |
global logger | |
# Setup CUDA, GPU & distributed training | |
args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 | |
os.environ['OMP_NUM_THREADS'] = str(args.num_workers) | |
print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS'])) | |
args.distributed = args.num_gpus > 1 | |
args.device = torch.device(args.device) | |
if args.distributed: | |
print("Init distributed training on local rank {} ({}), rank {}, world size {}".format(args.local_rank, int(os.environ["LOCAL_RANK"]), int(os.environ["NODE_RANK"]), args.num_gpus)) | |
torch.cuda.set_device(args.local_rank) | |
torch.distributed.init_process_group( | |
backend='nccl', init_method='env://' | |
) | |
local_rank = int(os.environ["LOCAL_RANK"]) | |
args.device = torch.device("cuda", local_rank) | |
synchronize() | |
mkdir(args.output_dir) | |
logger = setup_logger("Graphormer", args.output_dir, get_rank()) | |
set_seed(args.seed, args.num_gpus) | |
logger.info("Using {} GPUs".format(args.num_gpus)) | |
# Mesh and SMPL utils | |
smpl = SMPL().to(args.device) | |
mesh_sampler = Mesh() | |
# Renderer for visualization | |
renderer = Renderer(faces=smpl.faces.cpu().numpy()) | |
# Load model | |
trans_encoder = [] | |
input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')] | |
hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')] | |
output_feat_dim = input_feat_dim[1:] + [3] | |
# which encoder block to have graph convs | |
which_blk_graph = [int(item) for item in args.which_gcn.split(',')] | |
if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint: | |
# if only run eval, load checkpoint | |
logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint)) | |
_model = torch.load(args.resume_checkpoint) | |
else: | |
# init three transformer-encoder blocks in a loop | |
for i in range(len(output_feat_dim)): | |
config_class, model_class = BertConfig, Graphormer | |
config = config_class.from_pretrained(args.config_name if args.config_name \ | |
else args.model_name_or_path) | |
config.output_attentions = False | |
config.hidden_dropout_prob = args.drop_out | |
config.img_feature_dim = input_feat_dim[i] | |
config.output_feature_dim = output_feat_dim[i] | |
args.hidden_size = hidden_feat_dim[i] | |
args.intermediate_size = int(args.hidden_size*args.interm_size_scale) | |
if which_blk_graph[i]==1: | |
config.graph_conv = True | |
logger.info("Add Graph Conv") | |
else: | |
config.graph_conv = False | |
config.mesh_type = args.mesh_type | |
# update model structure if specified in arguments | |
update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size'] | |
for idx, param in enumerate(update_params): | |
arg_param = getattr(args, param) | |
config_param = getattr(config, param) | |
if arg_param > 0 and arg_param != config_param: | |
logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param)) | |
setattr(config, param, arg_param) | |
# init a transformer encoder and append it to a list | |
assert config.hidden_size % config.num_attention_heads == 0 | |
model = model_class(config=config) | |
logger.info("Init model from scratch.") | |
trans_encoder.append(model) | |
# init ImageNet pre-trained backbone model | |
if args.arch=='hrnet': | |
hrnet_yaml = 'models/hrnet/cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml' | |
hrnet_checkpoint = 'models/hrnet/hrnetv2_w40_imagenet_pretrained.pth' | |
hrnet_update_config(hrnet_config, hrnet_yaml) | |
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint) | |
logger.info('=> loading hrnet-v2-w40 model') | |
elif args.arch=='hrnet-w64': | |
hrnet_yaml = 'models/hrnet/cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml' | |
hrnet_checkpoint = 'models/hrnet/hrnetv2_w64_imagenet_pretrained.pth' | |
hrnet_update_config(hrnet_config, hrnet_yaml) | |
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint) | |
logger.info('=> loading hrnet-v2-w64 model') | |
else: | |
print("=> using pre-trained model '{}'".format(args.arch)) | |
backbone = models.__dict__[args.arch](pretrained=True) | |
# remove the last fc layer | |
backbone = torch.nn.Sequential(*list(backbone.children())[:-2]) | |
trans_encoder = torch.nn.Sequential(*trans_encoder) | |
total_params = sum(p.numel() for p in trans_encoder.parameters()) | |
logger.info('Graphormer encoders total parameters: {}'.format(total_params)) | |
backbone_total_params = sum(p.numel() for p in backbone.parameters()) | |
logger.info('Backbone total parameters: {}'.format(backbone_total_params)) | |
# build end-to-end Graphormer network (CNN backbone + multi-layer graphormer encoder) | |
_model = Graphormer_Network(args, config, backbone, trans_encoder, mesh_sampler) | |
if args.resume_checkpoint!=None and args.resume_checkpoint!='None': | |
# for fine-tuning or resume training or inference, load weights from checkpoint | |
logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint)) | |
# workaround approach to load sparse tensor in graph conv. | |
states = torch.load(args.resume_checkpoint) | |
# states = checkpoint_loaded.state_dict() | |
for k, v in states.items(): | |
states[k] = v.cpu() | |
# del checkpoint_loaded | |
_model.load_state_dict(states, strict=False) | |
del states | |
gc.collect() | |
torch.cuda.empty_cache() | |
_model.to(args.device) | |
logger.info("Training parameters %s", args) | |
if args.run_eval_only==True: | |
val_dataloader = make_data_loader(args, args.val_yaml, | |
args.distributed, is_train=False, scale_factor=args.img_scale_factor) | |
run_eval_general(args, val_dataloader, _model, smpl, mesh_sampler) | |
else: | |
train_dataloader = make_data_loader(args, args.train_yaml, | |
args.distributed, is_train=True, scale_factor=args.img_scale_factor) | |
val_dataloader = make_data_loader(args, args.val_yaml, | |
args.distributed, is_train=False, scale_factor=args.img_scale_factor) | |
run(args, train_dataloader, val_dataloader, _model, smpl, mesh_sampler, renderer) | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |