JasonSmithSO's picture
Upload 777 files
0034848 verified
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
Training and evaluation codes for
3D hand mesh reconstruction from an image
"""
from __future__ import absolute_import, division, print_function
import argparse
import os
import os.path as op
import code
import json
import time
import datetime
import torch
import torchvision.models as models
from torchvision.utils import make_grid
import gc
import numpy as np
import cv2
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer
from custom_mesh_graphormer.modeling.bert import Graphormer_Hand_Network as Graphormer_Network
from custom_mesh_graphormer.modeling._mano import MANO, Mesh
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config
import custom_mesh_graphormer.modeling.data.config as cfg
from custom_mesh_graphormer.datasets.build import make_hand_data_loader
from custom_mesh_graphormer.utils.logger import setup_logger
from custom_mesh_graphormer.utils.comm import synchronize, is_main_process, get_rank, get_world_size, all_gather
from custom_mesh_graphormer.utils.miscellaneous import mkdir, set_seed
from custom_mesh_graphormer.utils.metric_logger import AverageMeter
from custom_mesh_graphormer.utils.renderer import Renderer, visualize_reconstruction, visualize_reconstruction_test, visualize_reconstruction_no_text
from custom_mesh_graphormer.utils.metric_pampjpe import reconstruction_error
from custom_mesh_graphormer.utils.geometric_layers import orthographic_projection
from comfy.model_management import get_torch_device
device = get_torch_device()
from azureml.core.run import Run
aml_run = Run.get_context()
def save_checkpoint(model, args, epoch, iteration, num_trial=10):
checkpoint_dir = op.join(args.output_dir, 'checkpoint-{}-{}'.format(
epoch, iteration))
if not is_main_process():
return checkpoint_dir
mkdir(checkpoint_dir)
model_to_save = model.module if hasattr(model, 'module') else model
for i in range(num_trial):
try:
torch.save(model_to_save, op.join(checkpoint_dir, 'model.bin'))
torch.save(model_to_save.state_dict(), op.join(checkpoint_dir, 'state_dict.bin'))
torch.save(args, op.join(checkpoint_dir, 'training_args.bin'))
logger.info("Save checkpoint to {}".format(checkpoint_dir))
break
except:
pass
else:
logger.info("Failed to save checkpoint after {} trails.".format(num_trial))
return checkpoint_dir
def adjust_learning_rate(optimizer, epoch, args):
"""
Sets the learning rate to the initial LR decayed by x every y epochs
x = 0.1, y = args.num_train_epochs/2.0 = 100
"""
lr = args.lr * (0.1 ** (epoch // (args.num_train_epochs/2.0) ))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def keypoint_2d_loss(criterion_keypoints, pred_keypoints_2d, gt_keypoints_2d, has_pose_2d):
"""
Compute 2D reprojection loss if 2D keypoint annotations are available.
The confidence is binary and indicates whether the keypoints exist or not.
"""
conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone()
loss = (conf * criterion_keypoints(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).mean()
return loss
def keypoint_3d_loss(criterion_keypoints, pred_keypoints_3d, gt_keypoints_3d, has_pose_3d):
"""
Compute 3D keypoint loss if 3D keypoint annotations are available.
"""
conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone()
gt_keypoints_3d = gt_keypoints_3d[:, :, :-1].clone()
gt_keypoints_3d = gt_keypoints_3d[has_pose_3d == 1]
conf = conf[has_pose_3d == 1]
pred_keypoints_3d = pred_keypoints_3d[has_pose_3d == 1]
if len(gt_keypoints_3d) > 0:
gt_root = gt_keypoints_3d[:, 0,:]
gt_keypoints_3d = gt_keypoints_3d - gt_root[:, None, :]
pred_root = pred_keypoints_3d[:, 0,:]
pred_keypoints_3d = pred_keypoints_3d - pred_root[:, None, :]
return (conf * criterion_keypoints(pred_keypoints_3d, gt_keypoints_3d)).mean()
else:
return torch.FloatTensor(1).fill_(0.).to(device)
def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl):
"""
Compute per-vertex loss if vertex annotations are available.
"""
pred_vertices_with_shape = pred_vertices[has_smpl == 1]
gt_vertices_with_shape = gt_vertices[has_smpl == 1]
if len(gt_vertices_with_shape) > 0:
return criterion_vertices(pred_vertices_with_shape, gt_vertices_with_shape)
else:
return torch.FloatTensor(1).fill_(0.).to(device)
def run(args, train_dataloader, Graphormer_model, mano_model, renderer, mesh_sampler):
max_iter = len(train_dataloader)
iters_per_epoch = max_iter // args.num_train_epochs
optimizer = torch.optim.Adam(params=list(Graphormer_model.parameters()),
lr=args.lr,
betas=(0.9, 0.999),
weight_decay=0)
# define loss function (criterion) and optimizer
criterion_2d_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_vertices = torch.nn.L1Loss().to(device)
if args.distributed:
Graphormer_model = torch.nn.parallel.DistributedDataParallel(
Graphormer_model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
start_training_time = time.time()
end = time.time()
Graphormer_model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
log_losses = AverageMeter()
log_loss_2djoints = AverageMeter()
log_loss_3djoints = AverageMeter()
log_loss_vertices = AverageMeter()
for iteration, (img_keys, images, annotations) in enumerate(train_dataloader):
Graphormer_model.train()
iteration += 1
epoch = iteration // iters_per_epoch
batch_size = images.size(0)
adjust_learning_rate(optimizer, epoch, args)
data_time.update(time.time() - end)
images = images.to(device)
gt_2d_joints = annotations['joints_2d'].to(device)
gt_pose = annotations['pose'].to(device)
gt_betas = annotations['betas'].to(device)
has_mesh = annotations['has_smpl'].to(device)
has_3d_joints = has_mesh
has_2d_joints = has_mesh
mjm_mask = annotations['mjm_mask'].to(device)
mvm_mask = annotations['mvm_mask'].to(device)
# generate mesh
gt_vertices, gt_3d_joints = mano_model.layer(gt_pose, gt_betas)
gt_vertices = gt_vertices/1000.0
gt_3d_joints = gt_3d_joints/1000.0
gt_vertices_sub = mesh_sampler.downsample(gt_vertices)
# normalize gt based on hand's wrist
gt_3d_root = gt_3d_joints[:,cfg.J_NAME.index('Wrist'),:]
gt_vertices = gt_vertices - gt_3d_root[:, None, :]
gt_vertices_sub = gt_vertices_sub - gt_3d_root[:, None, :]
gt_3d_joints = gt_3d_joints - gt_3d_root[:, None, :]
gt_3d_joints_with_tag = torch.ones((batch_size,gt_3d_joints.shape[1],4)).to(device)
gt_3d_joints_with_tag[:,:,:3] = gt_3d_joints
# prepare masks for mask vertex/joint modeling
mjm_mask_ = mjm_mask.expand(-1,-1,2051)
mvm_mask_ = mvm_mask.expand(-1,-1,2051)
meta_masks = torch.cat([mjm_mask_, mvm_mask_], dim=1)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler, meta_masks=meta_masks, is_train=True)
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
# obtain 2d joints, which are projected from 3d joints of smpl mesh
pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
pred_2d_joints = orthographic_projection(pred_3d_joints.contiguous(), pred_camera.contiguous())
# compute 3d joint loss (where the joints are directly output from transformer)
loss_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints, gt_3d_joints_with_tag, has_3d_joints)
# compute 3d vertex loss
loss_vertices = ( args.vloss_w_sub * vertices_loss(criterion_vertices, pred_vertices_sub, gt_vertices_sub, has_mesh) + \
args.vloss_w_full * vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_mesh) )
# compute 3d joint loss (where the joints are regressed from full mesh)
loss_reg_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints_from_mesh, gt_3d_joints_with_tag, has_3d_joints)
# compute 2d joint loss
loss_2d_joints = keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints, gt_2d_joints, has_2d_joints) + \
keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints_from_mesh, gt_2d_joints, has_2d_joints)
loss_3d_joints = loss_3d_joints + loss_reg_3d_joints
# we empirically use hyperparameters to balance difference losses
loss = args.joints_loss_weight*loss_3d_joints + \
args.vertices_loss_weight*loss_vertices + args.vertices_loss_weight*loss_2d_joints
# update logs
log_loss_2djoints.update(loss_2d_joints.item(), batch_size)
log_loss_3djoints.update(loss_3d_joints.item(), batch_size)
log_loss_vertices.update(loss_vertices.item(), batch_size)
log_losses.update(loss.item(), batch_size)
# back prop
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if iteration % args.logging_steps == 0 or iteration == max_iter:
eta_seconds = batch_time.avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.info(
' '.join(
['eta: {eta}', 'epoch: {ep}', 'iter: {iter}', 'max mem : {memory:.0f}',]
).format(eta=eta_string, ep=epoch, iter=iteration,
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0)
+ ' loss: {:.4f}, 2d joint loss: {:.4f}, 3d joint loss: {:.4f}, vertex loss: {:.4f}, compute: {:.4f}, data: {:.4f}, lr: {:.6f}'.format(
log_losses.avg, log_loss_2djoints.avg, log_loss_3djoints.avg, log_loss_vertices.avg, batch_time.avg, data_time.avg,
optimizer.param_groups[0]['lr'])
)
aml_run.log(name='Loss', value=float(log_losses.avg))
aml_run.log(name='3d joint Loss', value=float(log_loss_3djoints.avg))
aml_run.log(name='2d joint Loss', value=float(log_loss_2djoints.avg))
aml_run.log(name='vertex Loss', value=float(log_loss_vertices.avg))
visual_imgs = visualize_mesh( renderer,
annotations['ori_img'].detach(),
annotations['joints_2d'].detach(),
pred_vertices.detach(),
pred_camera.detach(),
pred_2d_joints_from_mesh.detach())
visual_imgs = visual_imgs.transpose(0,1)
visual_imgs = visual_imgs.transpose(1,2)
visual_imgs = np.asarray(visual_imgs)
if is_main_process()==True:
stamp = str(epoch) + '_' + str(iteration)
temp_fname = args.output_dir + 'visual_' + stamp + '.jpg'
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))
aml_run.log_image(name='visual results', path=temp_fname)
if iteration % iters_per_epoch == 0:
if epoch%10==0:
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info('Total training time: {} ({:.4f} s / iter)'.format(
total_time_str, total_training_time / max_iter)
)
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)
def run_eval_and_save(args, split, val_dataloader, Graphormer_model, mano_model, renderer, mesh_sampler):
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_vertices = torch.nn.L1Loss().to(device)
if args.distributed:
Graphormer_model = torch.nn.parallel.DistributedDataParallel(
Graphormer_model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
Graphormer_model.eval()
if args.aml_eval==True:
run_aml_inference_hand_mesh(args, val_dataloader,
Graphormer_model,
criterion_keypoints,
criterion_vertices,
0,
mano_model, mesh_sampler,
renderer, split)
else:
run_inference_hand_mesh(args, val_dataloader,
Graphormer_model,
criterion_keypoints,
criterion_vertices,
0,
mano_model, mesh_sampler,
renderer, split)
checkpoint_dir = save_checkpoint(Graphormer_model, args, 0, 0)
return
def run_aml_inference_hand_mesh(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, mano_model, mesh_sampler, renderer, split):
# switch to evaluate mode
Graphormer_model.eval()
fname_output_save = []
mesh_output_save = []
joint_output_save = []
world_size = get_world_size()
with torch.no_grad():
for i, (img_keys, images, annotations) in enumerate(val_loader):
batch_size = images.size(0)
# compute output
images = images.to(device)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler)
# obtain 3d joints from full mesh
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
for j in range(batch_size):
fname_output_save.append(img_keys[j])
pred_vertices_list = pred_vertices[j].tolist()
mesh_output_save.append(pred_vertices_list)
pred_3d_joints_from_mesh_list = pred_3d_joints_from_mesh[j].tolist()
joint_output_save.append(pred_3d_joints_from_mesh_list)
if world_size > 1:
torch.distributed.barrier()
print('save results to pred.json')
output_json_file = 'pred.json'
print('save results to ', output_json_file)
with open(output_json_file, 'w') as f:
json.dump([joint_output_save, mesh_output_save], f)
azure_ckpt_name = '200' # args.resume_checkpoint.split('/')[-2].split('-')[1]
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
output_zip_file = args.output_dir + 'ckpt' + azure_ckpt_name + '-' + inference_setting +'-pred.zip'
resolved_submit_cmd = 'zip ' + output_zip_file + ' ' + output_json_file
print(resolved_submit_cmd)
os.system(resolved_submit_cmd)
resolved_submit_cmd = 'rm %s'%(output_json_file)
print(resolved_submit_cmd)
os.system(resolved_submit_cmd)
if world_size > 1:
torch.distributed.barrier()
return
def run_inference_hand_mesh(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, mano_model, mesh_sampler, renderer, split):
# switch to evaluate mode
Graphormer_model.eval()
fname_output_save = []
mesh_output_save = []
joint_output_save = []
with torch.no_grad():
for i, (img_keys, images, annotations) in enumerate(val_loader):
batch_size = images.size(0)
# compute output
images = images.to(device)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler)
# obtain 3d joints from full mesh
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
pred_3d_pelvis = pred_3d_joints_from_mesh[:,cfg.J_NAME.index('Wrist'),:]
pred_3d_joints_from_mesh = pred_3d_joints_from_mesh - pred_3d_pelvis[:, None, :]
pred_vertices = pred_vertices - pred_3d_pelvis[:, None, :]
for j in range(batch_size):
fname_output_save.append(img_keys[j])
pred_vertices_list = pred_vertices[j].tolist()
mesh_output_save.append(pred_vertices_list)
pred_3d_joints_from_mesh_list = pred_3d_joints_from_mesh[j].tolist()
joint_output_save.append(pred_3d_joints_from_mesh_list)
if i%20==0:
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
# obtain 2d joints, which are projected from 3d joints of mesh
pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
visual_imgs = visualize_mesh( renderer,
annotations['ori_img'].detach(),
annotations['joints_2d'].detach(),
pred_vertices.detach(),
pred_camera.detach(),
pred_2d_joints_from_mesh.detach())
visual_imgs = visual_imgs.transpose(0,1)
visual_imgs = visual_imgs.transpose(1,2)
visual_imgs = np.asarray(visual_imgs)
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
temp_fname = args.output_dir + args.resume_checkpoint[0:-9] + 'freihand_results_'+inference_setting+'_batch'+str(i)+'.jpg'
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))
print('save results to pred.json')
with open('pred.json', 'w') as f:
json.dump([joint_output_save, mesh_output_save], f)
run_exp_name = args.resume_checkpoint.split('/')[-3]
run_ckpt_name = args.resume_checkpoint.split('/')[-2].split('-')[1]
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
resolved_submit_cmd = 'zip ' + args.output_dir + run_exp_name + '-ckpt'+ run_ckpt_name + '-' + inference_setting +'-pred.zip ' + 'pred.json'
print(resolved_submit_cmd)
os.system(resolved_submit_cmd)
resolved_submit_cmd = 'rm pred.json'
print(resolved_submit_cmd)
os.system(resolved_submit_cmd)
return
def visualize_mesh( renderer,
images,
gt_keypoints_2d,
pred_vertices,
pred_camera,
pred_keypoints_2d):
"""Tensorboard logging."""
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
to_lsp = list(range(21))
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 10)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get LSP keypoints from the full list of keypoints
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
# Visualize reconstruction and detected pose
rend_img = visualize_reconstruction(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer)
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def visualize_mesh_test( renderer,
images,
gt_keypoints_2d,
pred_vertices,
pred_camera,
pred_keypoints_2d,
PAmPJPE):
"""Tensorboard logging."""
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
to_lsp = list(range(21))
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 10)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get LSP keypoints from the full list of keypoints
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
score = PAmPJPE[i]
# Visualize reconstruction and detected pose
rend_img = visualize_reconstruction_test(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer, score)
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def visualize_mesh_no_text( renderer,
images,
pred_vertices,
pred_camera):
"""Tensorboard logging."""
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 1)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
# Visualize reconstruction only
rend_img = visualize_reconstruction_no_text(img, 224, vertices, cam, renderer, color='hand')
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def parse_args():
parser = argparse.ArgumentParser()
#########################################################
# Data related arguments
#########################################################
parser.add_argument("--data_dir", default='datasets', type=str, required=False,
help="Directory with all datasets, each in one subfolder")
parser.add_argument("--train_yaml", default='imagenet2012/train.yaml', type=str, required=False,
help="Yaml file with all data for training.")
parser.add_argument("--val_yaml", default='imagenet2012/test.yaml', type=str, required=False,
help="Yaml file with all data for validation.")
parser.add_argument("--num_workers", default=4, type=int,
help="Workers in dataloader.")
parser.add_argument("--img_scale_factor", default=1, type=int,
help="adjust image resolution.")
#########################################################
# Loading/saving checkpoints
#########################################################
parser.add_argument("--model_name_or_path", default='src/modeling/bert/bert-base-uncased/', type=str, required=False,
help="Path to pre-trained transformer model or model type.")
parser.add_argument("--resume_checkpoint", default=None, type=str, required=False,
help="Path to specific checkpoint for resume training.")
parser.add_argument("--output_dir", default='output/', type=str, required=False,
help="The output directory to save checkpoint and test results.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name.")
parser.add_argument('-a', '--arch', default='hrnet-w64',
help='CNN backbone architecture: hrnet-w64, hrnet, resnet50')
#########################################################
# Training parameters
#########################################################
parser.add_argument("--per_gpu_train_batch_size", default=64, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=64, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--lr', "--learning_rate", default=1e-4, type=float,
help="The initial lr.")
parser.add_argument("--num_train_epochs", default=200, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--vertices_loss_weight", default=1.0, type=float)
parser.add_argument("--joints_loss_weight", default=1.0, type=float)
parser.add_argument("--vloss_w_full", default=0.5, type=float)
parser.add_argument("--vloss_w_sub", default=0.5, type=float)
parser.add_argument("--drop_out", default=0.1, type=float,
help="Drop out ratio in BERT.")
#########################################################
# Model architectures
#########################################################
parser.add_argument("--num_hidden_layers", default=-1, type=int, required=False,
help="Update model config if given")
parser.add_argument("--hidden_size", default=-1, type=int, required=False,
help="Update model config if given")
parser.add_argument("--num_attention_heads", default=-1, type=int, required=False,
help="Update model config if given. Note that the division of "
"hidden_size / num_attention_heads should be in integer.")
parser.add_argument("--intermediate_size", default=-1, type=int, required=False,
help="Update model config if given.")
parser.add_argument("--input_feat_dim", default='2051,512,128', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--hidden_feat_dim", default='1024,256,64', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--which_gcn", default='0,0,1', type=str,
help="which encoder block to have graph conv. Encoder1, Encoder2, Encoder3. Default: only Encoder3 has graph conv")
parser.add_argument("--mesh_type", default='hand', type=str, help="body or hand")
#########################################################
# Others
#########################################################
parser.add_argument("--run_eval_only", default=False, action='store_true',)
parser.add_argument("--multiscale_inference", default=False, action='store_true',)
# if enable "multiscale_inference", dataloader will apply transformations to the test image based on
# the rotation "rot" and scale "sc" parameters below
parser.add_argument("--rot", default=0, type=float)
parser.add_argument("--sc", default=1.0, type=float)
parser.add_argument("--aml_eval", default=False, action='store_true',)
parser.add_argument('--logging_steps', type=int, default=100,
help="Log every X steps.")
parser.add_argument("--device", type=str, default='cuda',
help="cuda or cpu")
parser.add_argument('--seed', type=int, default=88,
help="random seed for initialization.")
parser.add_argument("--local_rank", type=int, default=0,
help="For distributed training.")
args = parser.parse_args()
return args
def main(args):
global logger
# Setup CUDA, GPU & distributed training
args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
os.environ['OMP_NUM_THREADS'] = str(args.num_workers)
print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS']))
args.distributed = args.num_gpus > 1
args.device = torch.device(args.device)
if args.distributed:
print("Init distributed training on local rank {}".format(args.local_rank))
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend='nccl', init_method='env://'
)
synchronize()
mkdir(args.output_dir)
logger = setup_logger("Graphormer", args.output_dir, get_rank())
set_seed(args.seed, args.num_gpus)
logger.info("Using {} GPUs".format(args.num_gpus))
# Mesh and SMPL utils
mano_model = MANO().to(args.device)
mano_model.layer = mano_model.layer.to(device)
mesh_sampler = Mesh()
# Renderer for visualization
renderer = Renderer(faces=mano_model.face)
# Load pretrained model
trans_encoder = []
input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')]
hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')]
output_feat_dim = input_feat_dim[1:] + [3]
# which encoder block to have graph convs
which_blk_graph = [int(item) for item in args.which_gcn.split(',')]
if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint:
# if only run eval, load checkpoint
logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint))
_model = torch.load(args.resume_checkpoint)
else:
# init three transformer-encoder blocks in a loop
for i in range(len(output_feat_dim)):
config_class, model_class = BertConfig, Graphormer
config = config_class.from_pretrained(args.config_name if args.config_name \
else args.model_name_or_path)
config.output_attentions = False
config.hidden_dropout_prob = args.drop_out
config.img_feature_dim = input_feat_dim[i]
config.output_feature_dim = output_feat_dim[i]
args.hidden_size = hidden_feat_dim[i]
args.intermediate_size = int(args.hidden_size*2)
if which_blk_graph[i]==1:
config.graph_conv = True
logger.info("Add Graph Conv")
else:
config.graph_conv = False
config.mesh_type = args.mesh_type
# update model structure if specified in arguments
update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size']
for idx, param in enumerate(update_params):
arg_param = getattr(args, param)
config_param = getattr(config, param)
if arg_param > 0 and arg_param != config_param:
logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param))
setattr(config, param, arg_param)
# init a transformer encoder and append it to a list
assert config.hidden_size % config.num_attention_heads == 0
model = model_class(config=config)
logger.info("Init model from scratch.")
trans_encoder.append(model)
# create backbone model
if args.arch=='hrnet':
hrnet_yaml = 'models/hrnet/cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w40_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w40 model')
elif args.arch=='hrnet-w64':
hrnet_yaml = 'models/hrnet/cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w64_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w64 model')
else:
print("=> using pre-trained model '{}'".format(args.arch))
backbone = models.__dict__[args.arch](pretrained=True)
# remove the last fc layer
backbone = torch.nn.Sequential(*list(backbone.children())[:-1])
trans_encoder = torch.nn.Sequential(*trans_encoder)
total_params = sum(p.numel() for p in trans_encoder.parameters())
logger.info('Graphormer encoders total parameters: {}'.format(total_params))
backbone_total_params = sum(p.numel() for p in backbone.parameters())
logger.info('Backbone total parameters: {}'.format(backbone_total_params))
# build end-to-end Graphormer network (CNN backbone + multi-layer Graphormer encoder)
_model = Graphormer_Network(args, config, backbone, trans_encoder)
if args.resume_checkpoint!=None and args.resume_checkpoint!='None':
# for fine-tuning or resume training or inference, load weights from checkpoint
logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint))
# workaround approach to load sparse tensor in graph conv.
state_dict = torch.load(args.resume_checkpoint)
_model.load_state_dict(state_dict, strict=False)
del state_dict
gc.collect()
torch.cuda.empty_cache()
_model.to(args.device)
logger.info("Training parameters %s", args)
if args.run_eval_only==True:
val_dataloader = make_hand_data_loader(args, args.val_yaml,
args.distributed, is_train=False, scale_factor=args.img_scale_factor)
run_eval_and_save(args, 'freihand', val_dataloader, _model, mano_model, renderer, mesh_sampler)
else:
train_dataloader = make_hand_data_loader(args, args.train_yaml,
args.distributed, is_train=True, scale_factor=args.img_scale_factor)
run(args, train_dataloader, _model, mano_model, renderer, mesh_sampler)
if __name__ == "__main__":
args = parse_args()
main(args)