Spaces:
Configuration error
Configuration error
""" | |
Copyright (c) Microsoft Corporation. | |
Licensed under the MIT license. | |
This file contains primitives for multi-gpu communication. | |
This is useful when doing distributed training. | |
""" | |
import pickle | |
import time | |
import torch | |
import torch.distributed as dist | |
from comfy.model_management import get_torch_device | |
device = get_torch_device() | |
def get_world_size(): | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def synchronize(): | |
""" | |
Helper function to synchronize (barrier) among all processes when | |
using distributed training | |
""" | |
if not dist.is_available(): | |
return | |
if not dist.is_initialized(): | |
return | |
world_size = dist.get_world_size() | |
if world_size == 1: | |
return | |
dist.barrier() | |
def gather_on_master(data): | |
"""Same as all_gather, but gathers data on master process only, using CPU. | |
Thus, this does not work with NCCL backend unless they add CPU support. | |
The memory consumption of this function is ~ 3x of data size. While in | |
principal, it should be ~2x, it's not easy to force Python to release | |
memory immediately and thus, peak memory usage could be up to 3x. | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
# trying to optimize memory, but in fact, it's not guaranteed to be released | |
del data | |
storage = torch.ByteStorage.from_buffer(buffer) | |
del buffer | |
tensor = torch.ByteTensor(storage) | |
# obtain Tensor size of each rank | |
local_size = torch.LongTensor([tensor.numel()]) | |
size_list = [torch.LongTensor([0]) for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size,)) | |
tensor = torch.cat((tensor, padding), dim=0) | |
del padding | |
if is_main_process(): | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size,))) | |
dist.gather(tensor, gather_list=tensor_list, dst=0) | |
del tensor | |
else: | |
dist.gather(tensor, gather_list=[], dst=0) | |
del tensor | |
return | |
data_list = [] | |
for tensor in tensor_list: | |
buffer = tensor.cpu().numpy().tobytes() | |
del tensor | |
data_list.append(pickle.loads(buffer)) | |
del buffer | |
return data_list | |
def all_gather(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to(device) | |
# obtain Tensor size of each rank | |
local_size = torch.LongTensor([tensor.numel()]).to(device) | |
size_list = [torch.LongTensor([0]).to(device) for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size,)).to(device)) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size,)).to(device) | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def reduce_dict(input_dict, average=True): | |
""" | |
Args: | |
input_dict (dict): all the values will be reduced | |
average (bool): whether to do average or sum | |
Reduce the values in the dictionary from all processes so that process with rank | |
0 has the averaged results. Returns a dict with the same fields as | |
input_dict, after reduction. | |
""" | |
world_size = get_world_size() | |
if world_size < 2: | |
return input_dict | |
with torch.no_grad(): | |
names = [] | |
values = [] | |
# sort the keys so that they are consistent across processes | |
for k in sorted(input_dict.keys()): | |
names.append(k) | |
values.append(input_dict[k]) | |
values = torch.stack(values, dim=0) | |
dist.reduce(values, dst=0) | |
if dist.get_rank() == 0 and average: | |
# only main process gets accumulated, so only divide by | |
# world_size in this case | |
values /= world_size | |
reduced_dict = {k: v for k, v in zip(names, values)} | |
return reduced_dict | |