JasonSmithSO's picture
Upload 777 files
0034848 verified
"""
Rendering tools for 3D mesh visualization on 2D image.
Parts of the code are taken from https://github.com/akanazawa/hmr
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import cv2
import code
from opendr.camera import ProjectPoints
from opendr.renderer import ColoredRenderer, TexturedRenderer
from opendr.lighting import LambertianPointLight
import random
# Rotate the points by a specified angle.
def rotateY(points, angle):
ry = np.array([
[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.],
[-np.sin(angle), 0., np.cos(angle)]
])
return np.dot(points, ry)
def draw_skeleton(input_image, joints, draw_edges=True, vis=None, radius=None):
"""
joints is 3 x 19. but if not will transpose it.
0: Right ankle
1: Right knee
2: Right hip
3: Left hip
4: Left knee
5: Left ankle
6: Right wrist
7: Right elbow
8: Right shoulder
9: Left shoulder
10: Left elbow
11: Left wrist
12: Neck
13: Head top
14: nose
15: left_eye
16: right_eye
17: left_ear
18: right_ear
"""
if radius is None:
radius = max(4, (np.mean(input_image.shape[:2]) * 0.01).astype(int))
colors = {
'pink': (197, 27, 125), # L lower leg
'light_pink': (233, 163, 201), # L upper leg
'light_green': (161, 215, 106), # L lower arm
'green': (77, 146, 33), # L upper arm
'red': (215, 48, 39), # head
'light_red': (252, 146, 114), # head
'light_orange': (252, 141, 89), # chest
'purple': (118, 42, 131), # R lower leg
'light_purple': (175, 141, 195), # R upper
'light_blue': (145, 191, 219), # R lower arm
'blue': (69, 117, 180), # R upper arm
'gray': (130, 130, 130), #
'white': (255, 255, 255), #
}
image = input_image.copy()
input_is_float = False
if np.issubdtype(image.dtype, np.float):
input_is_float = True
max_val = image.max()
if max_val <= 2.: # should be 1 but sometimes it's slightly above 1
image = (image * 255).astype(np.uint8)
else:
image = (image).astype(np.uint8)
if joints.shape[0] != 2:
joints = joints.T
joints = np.round(joints).astype(int)
jcolors = [
'light_pink', 'light_pink', 'light_pink', 'pink', 'pink', 'pink',
'light_blue', 'light_blue', 'light_blue', 'blue', 'blue', 'blue',
'purple', 'purple', 'red', 'green', 'green', 'white', 'white',
'purple', 'purple', 'red', 'green', 'green', 'white', 'white'
]
if joints.shape[1] == 19:
# parent indices -1 means no parents
parents = np.array([
1, 2, 8, 9, 3, 4, 7, 8, 12, 12, 9, 10, 14, -1, 13, -1, -1, 15, 16
])
# Left is light and right is dark
ecolors = {
0: 'light_pink',
1: 'light_pink',
2: 'light_pink',
3: 'pink',
4: 'pink',
5: 'pink',
6: 'light_blue',
7: 'light_blue',
8: 'light_blue',
9: 'blue',
10: 'blue',
11: 'blue',
12: 'purple',
17: 'light_green',
18: 'light_green',
14: 'purple'
}
elif joints.shape[1] == 14:
parents = np.array([
1,
2,
8,
9,
3,
4,
7,
8,
-1,
-1,
9,
10,
13,
-1,
])
ecolors = {
0: 'light_pink',
1: 'light_pink',
2: 'light_pink',
3: 'pink',
4: 'pink',
5: 'pink',
6: 'light_blue',
7: 'light_blue',
10: 'light_blue',
11: 'blue',
12: 'purple'
}
elif joints.shape[1] == 21: # hand
parents = np.array([
-1,
0,
1,
2,
3,
0,
5,
6,
7,
0,
9,
10,
11,
0,
13,
14,
15,
0,
17,
18,
19,
])
ecolors = {
0: 'light_purple',
1: 'light_green',
2: 'light_green',
3: 'light_green',
4: 'light_green',
5: 'pink',
6: 'pink',
7: 'pink',
8: 'pink',
9: 'light_blue',
10: 'light_blue',
11: 'light_blue',
12: 'light_blue',
13: 'light_red',
14: 'light_red',
15: 'light_red',
16: 'light_red',
17: 'purple',
18: 'purple',
19: 'purple',
20: 'purple',
}
else:
print('Unknown skeleton!!')
for child in range(len(parents)):
point = joints[:, child]
# If invisible skip
if vis is not None and vis[child] == 0:
continue
if draw_edges:
cv2.circle(image, (point[0], point[1]), radius, colors['white'],
-1)
cv2.circle(image, (point[0], point[1]), radius - 1,
colors[jcolors[child]], -1)
else:
# cv2.circle(image, (point[0], point[1]), 5, colors['white'], 1)
cv2.circle(image, (point[0], point[1]), radius - 1,
colors[jcolors[child]], 1)
# cv2.circle(image, (point[0], point[1]), 5, colors['gray'], -1)
pa_id = parents[child]
if draw_edges and pa_id >= 0:
if vis is not None and vis[pa_id] == 0:
continue
point_pa = joints[:, pa_id]
cv2.circle(image, (point_pa[0], point_pa[1]), radius - 1,
colors[jcolors[pa_id]], -1)
if child not in ecolors.keys():
print('bad')
import ipdb
ipdb.set_trace()
cv2.line(image, (point[0], point[1]), (point_pa[0], point_pa[1]),
colors[ecolors[child]], radius - 2)
# Convert back in original dtype
if input_is_float:
if max_val <= 1.:
image = image.astype(np.float32) / 255.
else:
image = image.astype(np.float32)
return image
def draw_text(input_image, content):
"""
content is a dict. draws key: val on image
Assumes key is str, val is float
"""
image = input_image.copy()
input_is_float = False
if np.issubdtype(image.dtype, np.float):
input_is_float = True
image = (image * 255).astype(np.uint8)
black = (255, 255, 0)
margin = 15
start_x = 5
start_y = margin
for key in sorted(content.keys()):
text = "%s: %.2g" % (key, content[key])
cv2.putText(image, text, (start_x, start_y), 0, 0.45, black)
start_y += margin
if input_is_float:
image = image.astype(np.float32) / 255.
return image
def visualize_reconstruction(img, img_size, gt_kp, vertices, pred_kp, camera, renderer, color='pink', focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
gt_vis = gt_kp[:, 2].astype(bool)
loss = np.sum((gt_kp[gt_vis, :2] - pred_kp[gt_vis])**2)
debug_text = {"sc": camera[0], "tx": camera[1], "ty": camera[2], "kpl": loss}
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length,
body_color=color)
rend_img = draw_text(rend_img, debug_text)
# Draw skeleton
gt_joint = ((gt_kp[:, :2] + 1) * 0.5) * img_size
pred_joint = ((pred_kp + 1) * 0.5) * img_size
img_with_gt = draw_skeleton( img, gt_joint, draw_edges=False, vis=gt_vis)
skel_img = draw_skeleton(img_with_gt, pred_joint)
combined = np.hstack([skel_img, rend_img])
return combined
def visualize_reconstruction_test(img, img_size, gt_kp, vertices, pred_kp, camera, renderer, score, color='pink', focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
gt_vis = gt_kp[:, 2].astype(bool)
loss = np.sum((gt_kp[gt_vis, :2] - pred_kp[gt_vis])**2)
debug_text = {"sc": camera[0], "tx": camera[1], "ty": camera[2], "kpl": loss, "pa-mpjpe": score*1000}
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length,
body_color=color)
rend_img = draw_text(rend_img, debug_text)
# Draw skeleton
gt_joint = ((gt_kp[:, :2] + 1) * 0.5) * img_size
pred_joint = ((pred_kp + 1) * 0.5) * img_size
img_with_gt = draw_skeleton( img, gt_joint, draw_edges=False, vis=gt_vis)
skel_img = draw_skeleton(img_with_gt, pred_joint)
combined = np.hstack([skel_img, rend_img])
return combined
def visualize_reconstruction_and_att(img, img_size, vertices_full, vertices, vertices_2d, camera, renderer, ref_points, attention, focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices_full, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length, body_color='light_blue')
heads_num, vertex_num, _ = attention.shape
all_head = np.zeros((vertex_num,vertex_num))
###### find max
# for i in range(vertex_num):
# for j in range(vertex_num):
# all_head[i,j] = np.max(attention[:,i,j])
##### find avg
for h in range(4):
att_per_img = attention[h]
all_head = all_head + att_per_img
all_head = all_head/4
col_sums = all_head.sum(axis=0)
all_head = all_head / col_sums[np.newaxis, :]
# code.interact(local=locals())
combined = []
if vertex_num>400: # body
selected_joints = [6,7,4,5,13] # [6,7,4,5,13,12]
else: # hand
selected_joints = [0, 4, 8, 12, 16, 20]
# Draw attention
for ii in range(len(selected_joints)):
reference_id = selected_joints[ii]
ref_point = ref_points[reference_id]
attention_to_show = all_head[reference_id][14::]
min_v = np.min(attention_to_show)
max_v = np.max(attention_to_show)
norm_attention_to_show = (attention_to_show - min_v)/(max_v-min_v)
vertices_norm = ((vertices_2d + 1) * 0.5) * img_size
ref_norm = ((ref_point + 1) * 0.5) * img_size
image = np.zeros_like(rend_img)
for jj in range(vertices_norm.shape[0]):
x = int(vertices_norm[jj,0])
y = int(vertices_norm[jj,1])
cv2.circle(image,(x,y), 1, (255,255,255), -1)
total_to_draw = []
for jj in range(vertices_norm.shape[0]):
thres = 0.0
if norm_attention_to_show[jj]>thres:
things = [norm_attention_to_show[jj], ref_norm, vertices_norm[jj]]
total_to_draw.append(things)
# plot_one_line(ref_norm, vertices_norm[jj], image, reference_id, alpha=0.4*(norm_attention_to_show[jj]-thres)/(1-thres) )
total_to_draw.sort()
max_att_score = total_to_draw[-1][0]
for item in total_to_draw:
attention_score = item[0]
ref_point = item[1]
vertex = item[2]
plot_one_line(ref_point, vertex, image, ii, alpha=(attention_score-thres)/(max_att_score-thres) )
# code.interact(local=locals())
if len(combined)==0:
combined = image
else:
combined = np.hstack([combined, image])
final = np.hstack([img, combined, rend_img])
return final
def visualize_reconstruction_and_att_local(img, img_size, vertices_full, vertices, vertices_2d, camera, renderer, ref_points, attention, color='light_blue', focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices_full, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length, body_color=color)
heads_num, vertex_num, _ = attention.shape
all_head = np.zeros((vertex_num,vertex_num))
##### compute avg attention for 4 attention heads
for h in range(4):
att_per_img = attention[h]
all_head = all_head + att_per_img
all_head = all_head/4
col_sums = all_head.sum(axis=0)
all_head = all_head / col_sums[np.newaxis, :]
combined = []
if vertex_num>400: # body
selected_joints = [7] # [6,7,4,5,13,12]
else: # hand
selected_joints = [0] # [0, 4, 8, 12, 16, 20]
# Draw attention
for ii in range(len(selected_joints)):
reference_id = selected_joints[ii]
ref_point = ref_points[reference_id]
attention_to_show = all_head[reference_id][14::]
min_v = np.min(attention_to_show)
max_v = np.max(attention_to_show)
norm_attention_to_show = (attention_to_show - min_v)/(max_v-min_v)
vertices_norm = ((vertices_2d + 1) * 0.5) * img_size
ref_norm = ((ref_point + 1) * 0.5) * img_size
image = rend_img*0.4
total_to_draw = []
for jj in range(vertices_norm.shape[0]):
thres = 0.0
if norm_attention_to_show[jj]>thres:
things = [norm_attention_to_show[jj], ref_norm, vertices_norm[jj]]
total_to_draw.append(things)
total_to_draw.sort()
max_att_score = total_to_draw[-1][0]
for item in total_to_draw:
attention_score = item[0]
ref_point = item[1]
vertex = item[2]
plot_one_line(ref_point, vertex, image, ii, alpha=(attention_score-thres)/(max_att_score-thres) )
for jj in range(vertices_norm.shape[0]):
x = int(vertices_norm[jj,0])
y = int(vertices_norm[jj,1])
cv2.circle(image,(x,y), 1, (255,255,255), -1)
if len(combined)==0:
combined = image
else:
combined = np.hstack([combined, image])
final = np.hstack([img, combined, rend_img])
return final
def visualize_reconstruction_no_text(img, img_size, vertices, camera, renderer, color='pink', focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length,
body_color=color)
combined = np.hstack([img, rend_img])
return combined
def plot_one_line(ref, vertex, img, color_index, alpha=0.0, line_thickness=None):
# 13,6,7,8,3,4,5
# att_colors = [(255, 221, 104), (255, 255, 0), (255, 215, 227), (210, 240, 119), \
# (209, 238, 245), (244, 200, 243), (233, 242, 216)]
att_colors = [(255, 255, 0), (244, 200, 243), (210, 243, 119), (209, 238, 255), (200, 208, 255), (250, 238, 215)]
overlay = img.copy()
# output = img.copy()
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = list(att_colors[color_index])
c1, c2 = (int(ref[0]), int(ref[1])), (int(vertex[0]), int(vertex[1]))
cv2.line(overlay, c1, c2, (alpha*float(color[0])/255,alpha*float(color[1])/255,alpha*float(color[2])/255) , thickness=tl, lineType=cv2.LINE_AA)
cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
def cam2pixel(cam_coord, f, c):
x = cam_coord[:, 0] / (cam_coord[:, 2]) * f[0] + c[0]
y = cam_coord[:, 1] / (cam_coord[:, 2]) * f[1] + c[1]
z = cam_coord[:, 2]
img_coord = np.concatenate((x[:,None], y[:,None], z[:,None]),1)
return img_coord
class Renderer(object):
"""
Render mesh using OpenDR for visualization.
"""
def __init__(self, width=800, height=600, near=0.5, far=1000, faces=None):
self.colors = {'hand': [.9, .9, .9], 'pink': [.9, .7, .7], 'light_blue': [0.65098039, 0.74117647, 0.85882353] }
self.width = width
self.height = height
self.faces = faces
self.renderer = ColoredRenderer()
def render(self, vertices, faces=None, img=None,
camera_t=np.zeros([3], dtype=np.float32),
camera_rot=np.zeros([3], dtype=np.float32),
camera_center=None,
use_bg=False,
bg_color=(0.0, 0.0, 0.0),
body_color=None,
focal_length=5000,
disp_text=False,
gt_keyp=None,
pred_keyp=None,
**kwargs):
if img is not None:
height, width = img.shape[:2]
else:
height, width = self.height, self.width
if faces is None:
faces = self.faces
if camera_center is None:
camera_center = np.array([width * 0.5,
height * 0.5])
self.renderer.camera = ProjectPoints(rt=camera_rot,
t=camera_t,
f=focal_length * np.ones(2),
c=camera_center,
k=np.zeros(5))
dist = np.abs(self.renderer.camera.t.r[2] -
np.mean(vertices, axis=0)[2])
far = dist + 20
self.renderer.frustum = {'near': 1.0, 'far': far,
'width': width,
'height': height}
if img is not None:
if use_bg:
self.renderer.background_image = img
else:
self.renderer.background_image = np.ones_like(
img) * np.array(bg_color)
if body_color is None:
color = self.colors['light_blue']
else:
color = self.colors[body_color]
if isinstance(self.renderer, TexturedRenderer):
color = [1.,1.,1.]
self.renderer.set(v=vertices, f=faces,
vc=color, bgcolor=np.ones(3))
albedo = self.renderer.vc
# Construct Back Light (on back right corner)
yrot = np.radians(120)
self.renderer.vc = LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([-200, -100, -100]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Left Light
self.renderer.vc += LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([800, 10, 300]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Right Light
self.renderer.vc += LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([-500, 500, 1000]), yrot),
vc=albedo,
light_color=np.array([.7, .7, .7]))
return self.renderer.r
def render_vertex_color(self, vertices, faces=None, img=None,
camera_t=np.zeros([3], dtype=np.float32),
camera_rot=np.zeros([3], dtype=np.float32),
camera_center=None,
use_bg=False,
bg_color=(0.0, 0.0, 0.0),
vertex_color=None,
focal_length=5000,
disp_text=False,
gt_keyp=None,
pred_keyp=None,
**kwargs):
if img is not None:
height, width = img.shape[:2]
else:
height, width = self.height, self.width
if faces is None:
faces = self.faces
if camera_center is None:
camera_center = np.array([width * 0.5,
height * 0.5])
self.renderer.camera = ProjectPoints(rt=camera_rot,
t=camera_t,
f=focal_length * np.ones(2),
c=camera_center,
k=np.zeros(5))
dist = np.abs(self.renderer.camera.t.r[2] -
np.mean(vertices, axis=0)[2])
far = dist + 20
self.renderer.frustum = {'near': 1.0, 'far': far,
'width': width,
'height': height}
if img is not None:
if use_bg:
self.renderer.background_image = img
else:
self.renderer.background_image = np.ones_like(
img) * np.array(bg_color)
if vertex_color is None:
vertex_color = self.colors['light_blue']
self.renderer.set(v=vertices, f=faces,
vc=vertex_color, bgcolor=np.ones(3))
albedo = self.renderer.vc
# Construct Back Light (on back right corner)
yrot = np.radians(120)
self.renderer.vc = LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([-200, -100, -100]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Left Light
self.renderer.vc += LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([800, 10, 300]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Right Light
self.renderer.vc += LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([-500, 500, 1000]), yrot),
vc=albedo,
light_color=np.array([.7, .7, .7]))
return self.renderer.r