JoachimVC's picture
Fix UI and evaluation functionality with simplified app.py
0688ecc
import os
import gradio as gr
import requests
import pandas as pd
import logging
import time
import traceback
from typing import Dict, Any, Optional, Tuple, List, Union
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Import our GAIA Agent ---
from gaia_agent import GAIAAgent
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("gaia_evaluation")
# Initialize the GAIA Agent
def initialize_agent():
try:
agent = GAIAAgent()
logger.info("GAIA Agent initialized successfully")
return agent
except Exception as e:
logger.error(f"Error initializing GAIA Agent: {e}")
logger.error(traceback.format_exc())
return None
# Important: Match the exact signature from the template
def run_and_submit_all(profile=None):
"""
Fetches all questions, runs the GAIA Agent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID", "")
# Check if user is signed in
if profile:
if hasattr(profile, 'username'):
username = profile.username
logger.info(f"User logged in: {username}")
else:
username = str(profile)
logger.info(f"Using provided username: {username}")
else:
logger.warning("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = initialize_agent()
if agent is None:
error_msg = "Error initializing GAIA Agent. Check logs for details."
logger.error(error_msg)
return error_msg, None
except Exception as e:
error_msg = f"Error instantiating agent: {e}"
logger.error(error_msg)
return error_msg, None
# Link to the code repository in Hugging Face Space
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
logger.info(f"Using agent code URL: {agent_code}")
# 2. Fetch Questions
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
logger.warning("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
logger.info(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
error_msg = f"Error fetching questions: {e}"
logger.error(error_msg)
return error_msg, None
except requests.exceptions.JSONDecodeError as e:
error_msg = f"Error decoding JSON response from questions endpoint: {e}"
logger.error(f"{error_msg}\nResponse text: {response.text[:500]}")
return error_msg, None
except Exception as e:
error_msg = f"An unexpected error occurred fetching questions: {e}"
logger.error(error_msg)
logger.error(traceback.format_exc())
return error_msg, None
# 3. Run the GAIA Agent on all questions
results_log = []
answers_payload = []
logger.info(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
# Extract question information
task_id = item.get("task_id", item.get("id", f"q{i+1}"))
question_text = item.get("question")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
continue
logger.info(f"Processing question {i+1}/{len(questions_data)}: {question_text[:50]}...")
start_time = time.time()
try:
# Process the question with the GAIA Agent
submitted_answer = agent.process_question(question_text)
processing_time = time.time() - start_time
# Add to submission payload
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
# Store for results display
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
"Processing Time": f"{processing_time:.2f}s",
"Status": "Success"
})
logger.info(f"Question {i+1} processed successfully in {processing_time:.2f}s")
except Exception as e:
error_msg = f"Error running agent on task {task_id}: {e}"
logger.error(error_msg)
logger.error(traceback.format_exc())
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
"Processing Time": f"{time.time() - start_time:.2f}s",
"Status": "Error"
})
# Check if we have answers to submit
if not answers_payload:
logger.warning("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
logger.info(status_update)
# 5. Submit
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
# Extract results data
correct_count = result_data.get("correct_count", 0)
total_attempted = result_data.get("total_attempted", 0)
score = result_data.get("score", "N/A")
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username', username)}\n"
f"Overall Score: {score}% "
f"({correct_count}/{total_attempted} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
logger.info("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
logger.error(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
logger.error(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
logger.error(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
logger.error(status_message)
logger.error(traceback.format_exc())
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the GAIA agent, submit answers, and see the score.
---
**Note:** Running the evaluation may take some time as the agent processes all questions. Please be patient.
"""
)
# Create login button
login_btn = gr.LoginButton()
# Output text and result areas
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
# Run button
run_button = gr.Button("Run Evaluation & Submit All Answers")
# Set up event handler (simplified)
run_button.click(
fn=run_and_submit_all,
inputs=login_btn, # Connect login button directly
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for GAIA Agent Evaluation...")
# Determine launch parameters based on environment
is_running_in_space = bool(space_host_startup and space_id_startup)
if is_running_in_space:
# Production settings for Hugging Face Space
demo.launch(
debug=False,
share=False,
server_name="0.0.0.0"
)
else:
# Development settings for local testing
demo.launch(
debug=True,
share=False
)