Final_Assignment_GAIAAgent / src /gaia /tools /video_content_analyzer.py
JoachimVC's picture
Upload GAIA agent implementation files for assessment
c922f8b
"""
Video Content Analyzer for the GAIA agent.
This module provides tools for extracting and analyzing visual content from YouTube videos,
especially when transcripts are unavailable. It includes:
- Frame extraction from YouTube videos at strategic timestamps
- Visual content analysis using multimodal capabilities
- OCR for extracting text displayed in videos
- Consolidated visual and text analysis results
It serves as a fallback mechanism when YouTube transcript extraction fails,
enabling the agent to still understand video content through visual analysis.
"""
import logging
import traceback
import time
import re
import os
import tempfile
from typing import Dict, Any, List, Optional, Tuple, Union
from enum import Enum
from pathlib import Path
import json
# Configure module-level logger
logger = logging.getLogger("gaia_agent.tools.video_content_analyzer")
# Define error severity levels
class ErrorSeverity(Enum):
"""Enum for categorizing error severity levels."""
INFO = "INFO" # Informational, not critical
WARNING = "WARNING" # Potential issue, but operation can continue
ERROR = "ERROR" # Operation failed but system can continue
CRITICAL = "CRITICAL" # System cannot function properly
try:
from PIL import Image
import numpy as np
except ImportError:
Image = None
np = None
try:
import pytesseract
except ImportError:
pytesseract = None
from src.gaia.agent.config import get_tool_config, get_model_config
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
class VideoFrameExtractor:
"""Tool for extracting frames from YouTube videos using browser_action."""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize the video frame extractor.
Args:
config: Optional configuration dictionary
"""
self.config = config or get_tool_config().get("video_frame_extraction", {})
# Default configuration
self.default_frame_count = self.config.get("default_frame_count", 5)
self.temp_dir = self.config.get("temp_dir", tempfile.gettempdir())
self.capture_interval_pct = self.config.get("capture_interval_pct", [0, 0.25, 0.5, 0.75, 0.9])
logger.info(f"VideoFrameExtractor initialized with temporary directory: {self.temp_dir}")
def extract_video_id(self, video_id_or_url: str) -> str:
"""
Extract the YouTube video ID from a URL or return the ID if already provided.
Args:
video_id_or_url: YouTube video ID or URL
Returns:
The extracted video ID
Raises:
ValueError: If the video ID cannot be extracted
"""
# Check if it's already a video ID (typically 11 characters)
if re.match(r'^[a-zA-Z0-9_-]{11}$', video_id_or_url):
return video_id_or_url
# Try to extract from various URL formats
patterns = [
r'(?:youtube\.com/watch\?v=|youtu\.be/|youtube\.com/embed/|youtube\.com/shorts/)([a-zA-Z0-9_-]{11})',
r'youtube\.com/watch\?.*v=([a-zA-Z0-9_-]{11})'
]
for pattern in patterns:
match = re.search(pattern, video_id_or_url)
if match:
return match.group(1)
raise ValueError(f"Could not extract video ID from: {video_id_or_url}")
def extract_video_frames(self, video_id_or_url: str, frame_count: Optional[int] = None) -> Dict[str, Any]:
"""
Extract frames from a YouTube video using browser_action tool.
This method coordinates the browser interactions needed to:
1. Open the YouTube video
2. Capture screenshots at strategic timestamps
3. Save the screenshots for further analysis
Args:
video_id_or_url: YouTube video ID or URL
frame_count: Optional number of frames to capture, defaults to configuration
Returns:
Dictionary containing extracted frames and metadata
"""
try:
video_id = self.extract_video_id(video_id_or_url)
frames_to_capture = frame_count if frame_count is not None else self.default_frame_count
# Create a unique directory for this video's frames
timestamp = int(time.time())
video_frame_dir = os.path.join(self.temp_dir, f"video_frames_{video_id}_{timestamp}")
os.makedirs(video_frame_dir, exist_ok=True)
# Generate browser instructions for capturing frames
frame_capture_instructions = self._generate_frame_capture_instructions(
video_id, frames_to_capture, video_frame_dir
)
return {
"video_id": video_id,
"frame_count": frames_to_capture,
"frame_dir": video_frame_dir,
"browser_instructions": frame_capture_instructions,
"success": False, # Initially false, will be updated after browser interaction
"completed": False,
"timestamp": timestamp
}
except Exception as e:
logger.error(f"Error preparing video frame extraction: {str(e)}")
logger.error(traceback.format_exc())
return {
"video_id": video_id_or_url,
"error": f"Failed to prepare video frame extraction: {str(e)}",
"error_type": type(e).__name__,
"severity": ErrorSeverity.ERROR.value,
"success": False,
"browser_instructions": None
}
def _generate_frame_capture_instructions(self, video_id: str, frame_count: int,
output_dir: str) -> List[Dict[str, Any]]:
"""
Generate instructions for browser_action to capture video frames.
Args:
video_id: YouTube video ID
frame_count: Number of frames to capture
output_dir: Directory to save frames
Returns:
List of browser_action instructions
"""
# Calculate capture points based on video duration percentages
if frame_count != len(self.capture_interval_pct):
# Recalculate intervals based on requested frame count
self.capture_interval_pct = [i/(frame_count-1) if frame_count > 1 else 0.5
for i in range(frame_count)]
# Ensure we don't go too close to the end where video might have outro
if self.capture_interval_pct[-1] > 0.95:
self.capture_interval_pct[-1] = 0.95
# Embedded player URL with autoplay disabled for more control
embedded_url = f"https://www.youtube.com/embed/{video_id}?autoplay=0&controls=1"
# Browser instructions for capturing frames
instructions = [
{
"action": "launch",
"url": embedded_url,
"description": "Launch YouTube embedded player for the video"
},
{
"action": "wait",
"seconds": 3,
"description": "Wait for video player to load"
}
]
# Add instructions for each capture point
for i, interval_pct in enumerate(self.capture_interval_pct):
# Play video instructions
instructions.extend([
{
"action": "click",
"selector": ".ytp-play-button",
"description": f"Click play button to start video"
},
{
"action": "wait_for_duration_pct",
"percentage": interval_pct,
"description": f"Wait until {interval_pct:.0%} of the video"
},
{
"action": "click",
"selector": ".ytp-play-button",
"description": "Pause the video for screenshot"
},
{
"action": "take_screenshot",
"filename": f"{output_dir}/frame_{i+1}_of_{frame_count}.png",
"description": f"Take screenshot at {interval_pct:.0%} of video duration"
}
])
# Add final instruction to close browser
instructions.append({
"action": "close",
"description": "Close the browser after capturing all frames"
})
return instructions
def process_captured_frames(self, frame_dir: str) -> Dict[str, Any]:
"""
Process captured frames after browser_action has completed the extraction.
Args:
frame_dir: Directory containing the captured frames
Returns:
Dictionary containing processed frame information
"""
try:
if not os.path.exists(frame_dir):
raise FileNotFoundError(f"Frame directory not found: {frame_dir}")
# Get all PNG files in the directory
frame_files = sorted(
[f for f in os.listdir(frame_dir) if f.lower().endswith('.png')]
)
if not frame_files:
return {
"frame_dir": frame_dir,
"error": "No frame images found in directory",
"error_type": "NoFramesFound",
"severity": ErrorSeverity.ERROR.value,
"success": False
}
# Process each frame file
frame_data = []
for i, frame_file in enumerate(frame_files):
frame_path = os.path.join(frame_dir, frame_file)
# Extract frame number and total from filename using regex
match = re.search(r'frame_(\d+)_of_(\d+)', frame_file)
if match:
frame_num = int(match.group(1))
total_frames = int(match.group(2))
position = (frame_num - 1) / (total_frames - 1) if total_frames > 1 else 0
else:
frame_num = i + 1
total_frames = len(frame_files)
position = i / (len(frame_files) - 1) if len(frame_files) > 1 else 0
frame_data.append({
"path": frame_path,
"filename": frame_file,
"frame_number": frame_num,
"total_frames": total_frames,
"position": position,
"timestamp_pct": position
})
return {
"frame_dir": frame_dir,
"frame_count": len(frame_files),
"frames": frame_data,
"success": True,
"completed": True
}
except Exception as e:
logger.error(f"Error processing captured frames: {str(e)}")
logger.error(traceback.format_exc())
return {
"frame_dir": frame_dir,
"error": f"Failed to process captured frames: {str(e)}",
"error_type": type(e).__name__,
"severity": ErrorSeverity.ERROR.value,
"success": False
}
class VideoContentAnalyzer:
"""Tool for analyzing visual content from YouTube videos."""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize the video content analyzer.
Args:
config: Optional configuration dictionary
"""
self.config = config or get_tool_config().get("video_content_analysis", {})
self.model_config = get_model_config()
# Initialize vision model for image analysis
self.model = ChatOpenAI(
model=self.model_config.get("vision_model", "gpt-4o"),
temperature=self.model_config.get("temperature", 0.1),
max_tokens=self.model_config.get("max_tokens", 4096)
)
# Initialize frame extractor
self.frame_extractor = VideoFrameExtractor(config)
# OCR availability check
if pytesseract is None:
logger.warning("Pytesseract not installed. OCR features will be limited.")
def analyze_video_content(self, video_id_or_url: str, frame_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Analyze video content from captured frames.
Args:
video_id_or_url: YouTube video ID or URL
frame_data: Dictionary containing frame information from process_captured_frames
Returns:
Dictionary containing analysis results
"""
try:
video_id = self.frame_extractor.extract_video_id(video_id_or_url)
if not frame_data.get("success", False):
return {
"video_id": video_id,
"error": "Frame extraction was not successful",
"error_type": "FrameExtractionFailed",
"severity": ErrorSeverity.ERROR.value,
"success": False
}
frames = frame_data.get("frames", [])
if not frames:
return {
"video_id": video_id,
"error": "No frames available for analysis",
"error_type": "NoFramesAvailable",
"severity": ErrorSeverity.ERROR.value,
"success": False
}
# Analyze each frame
frame_analyses = []
for frame in frames:
frame_path = frame.get("path")
frame_position = frame.get("position", 0)
if not os.path.exists(frame_path):
logger.warning(f"Frame file not found: {frame_path}")
continue
# Analyze the frame
frame_analysis = self._analyze_frame(frame_path, frame_position)
frame_analyses.append({
**frame,
"analysis": frame_analysis
})
# Extract text content from frames using OCR
ocr_results = self._extract_text_from_frames(frames)
# Perform consolidated analysis of all frames
consolidated_analysis = self._consolidate_frame_analyses(frame_analyses)
# Combine all results
return {
"video_id": video_id,
"frame_count": len(frames),
"frame_analyses": frame_analyses,
"ocr_results": ocr_results,
"consolidated_analysis": consolidated_analysis,
"success": True,
"has_visual_content": True,
"analysis_method": "frame_extraction"
}
except Exception as e:
logger.error(f"Error analyzing video content: {str(e)}")
logger.error(traceback.format_exc())
return {
"video_id": video_id_or_url,
"error": f"Failed to analyze video content: {str(e)}",
"error_type": type(e).__name__,
"severity": ErrorSeverity.ERROR.value,
"success": False
}
def _analyze_frame(self, frame_path: str, frame_position: float) -> Dict[str, Any]:
"""
Analyze a single video frame using the vision model.
Args:
frame_path: Path to the frame image file
frame_position: Position of the frame in the video (0-1)
Returns:
Dictionary containing frame analysis
"""
try:
if Image is None:
raise ImportError("PIL not installed. Install with: pip install pillow")
if not os.path.exists(frame_path):
raise FileNotFoundError(f"Frame file not found: {frame_path}")
image = Image.open(frame_path)
# Use a simplified prompt to avoid string formatting issues
frame_type = "beginning" if frame_position < 0.1 else "end" if frame_position > 0.85 else "middle"
analysis_prompt = f"""Analyze this frame from the {frame_type} of a YouTube video.
For frames from the beginning of videos, focus on: introductory elements, titles, channel branding.
For frames from the middle of videos, focus on: main content, actions, subjects, visual information.
For frames from the end of videos, focus on: conclusions, call-to-action elements, credits.
Provide a detailed JSON response with:
- frame_description: What's visible in the frame
- visible_text: Any text visible in the frame
- key_elements: Important objects, people, or visual elements
- topic: The apparent topic or subject
- visual_style: Description of the visual presentation
JSON Response:"""
prompt_template = PromptTemplate.from_template(analysis_prompt)
chain = prompt_template | self.model | StrOutputParser()
result = chain.invoke({"image": image})
try:
parsed_result = json.loads(result)
return parsed_result
except json.JSONDecodeError:
logger.warning("Frame analysis result is not valid JSON, returning as plain text")
return {
"frame_description": result,
"analysis_error": "Failed to parse JSON result"
}
except Exception as e:
logger.error(f"Error analyzing frame: {str(e)}")
logger.error(traceback.format_exc())
return {
"analysis_error": f"Frame analysis failed: {str(e)}",
"error_type": type(e).__name__
}
def _extract_text_from_frames(self, frames: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Extract text from frames using OCR.
Args:
frames: List of frame information dictionaries
Returns:
Dictionary containing OCR results
"""
try:
if pytesseract is None:
return {
"success": False,
"error": "Pytesseract not installed. Install with: pip install pytesseract",
"text_found": False
}
if Image is None:
return {
"success": False,
"error": "PIL not installed. Install with: pip install pillow",
"text_found": False
}
ocr_results = []
all_text = []
for frame in frames:
frame_path = frame.get("path")
frame_position = frame.get("position", 0)
if not os.path.exists(frame_path):
logger.warning(f"Frame file not found for OCR: {frame_path}")
continue
try:
image = Image.open(frame_path)
# Apply image preprocessing for better OCR results
# Convert to grayscale for better text recognition
if image.mode != 'L':
image = image.convert('L')
# Extract text using pytesseract
extracted_text = pytesseract.image_to_string(image)
extracted_text = extracted_text.strip()
# Skip empty results
if not extracted_text:
ocr_results.append({
"frame_position": frame_position,
"text_found": False,
"text": ""
})
continue
# Add to results
ocr_results.append({
"frame_position": frame_position,
"text_found": True,
"text": extracted_text
})
all_text.append(f"[Frame at {frame_position:.0%}]: {extracted_text}")
except Exception as e:
logger.warning(f"OCR failed for frame {frame_path}: {str(e)}")
ocr_results.append({
"frame_position": frame_position,
"text_found": False,
"text": "",
"error": str(e)
})
# Compile all results
return {
"success": True,
"frames_processed": len(frames),
"frames_with_text": sum(1 for r in ocr_results if r.get("text_found", False)),
"text_found": any(r.get("text_found", False) for r in ocr_results),
"frame_results": ocr_results,
"combined_text": "\n\n".join(all_text)
}
except Exception as e:
logger.error(f"Error extracting text from frames: {str(e)}")
logger.error(traceback.format_exc())
return {
"success": False,
"error": f"Text extraction failed: {str(e)}",
"error_type": type(e).__name__,
"text_found": False
}
def _consolidate_frame_analyses(self, frame_analyses: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Consolidate individual frame analyses into a comprehensive video analysis.
Args:
frame_analyses: List of frame analysis results
Returns:
Dictionary containing consolidated analysis
"""
try:
if not frame_analyses:
return {
"error": "No frame analyses available for consolidation",
"success": False
}
# Prepare frame descriptions for input
frame_descriptions = []
for frame_analysis in frame_analyses:
position = frame_analysis.get("position", 0)
analysis = frame_analysis.get("analysis", {})
frame_desc = analysis.get("frame_description", "No description available")
frame_descriptions.append(f"[Frame at {position:.0%} of video] {frame_desc}")
# Join all the descriptions with newlines
all_descriptions = "\n".join(frame_descriptions)
# Create a simplified consolidated prompt
consolidated_prompt = """Based on the analysis of multiple frames from a YouTube video, provide a comprehensive understanding of the video content.
Frame descriptions:
{frame_descriptions}
Provide a JSON response with:
- video_topic: The main topic or subject of the video
- video_type: The type of video (tutorial, vlog, educational, etc.)
- key_elements: Important visual elements across frames
- visual_style: The overall visual style and production quality
- summary: A summary of what the video appears to be conveying
JSON Response:"""
prompt_template = PromptTemplate.from_template(consolidated_prompt)
chain = prompt_template | self.model | StrOutputParser()
result = chain.invoke({"frame_descriptions": all_descriptions})
try:
parsed_result = json.loads(result)
parsed_result["success"] = True
return parsed_result
except json.JSONDecodeError:
logger.warning("Consolidated analysis result is not valid JSON, returning as plain text")
return {
"summary": result,
"success": True,
"parsing_error": "Failed to parse JSON result"
}
except Exception as e:
logger.error(f"Error consolidating frame analyses: {str(e)}")
logger.error(traceback.format_exc())
return {
"error": f"Consolidation failed: {str(e)}",
"error_type": type(e).__name__,
"success": False
}
def analyze_youtube_video(self, video_id_or_url: str, frame_count: Optional[int] = None) -> Dict[str, Any]:
"""
Complete flow for analyzing YouTube video content through visual extraction.
This serves as the main entry point for the module, handling the entire process:
1. Extract frames from the video
2. Process the captured frames
3. Analyze the visual content
4. Extract text using OCR
5. Provide consolidated results
Args:
video_id_or_url: YouTube video ID or URL
frame_count: Optional number of frames to capture
Returns:
Dictionary containing complete analysis results
"""
try:
# Extract frames from the video
extraction_result = self.frame_extractor.extract_video_frames(
video_id_or_url, frame_count
)
# At this point, the browser_action tool should be used according to the
# instructions in extraction_result["browser_instructions"]
# This requires user/agent interaction to actually capture the frames
# After browser_action has completed, process the captured frames
frame_dir = extraction_result.get("frame_dir")
if not frame_dir or not os.path.exists(frame_dir):
return {
"video_id": self.frame_extractor.extract_video_id(video_id_or_url),
"error": "Frame extraction not completed or directory not found",
"error_type": "FrameExtractionIncomplete",
"severity": ErrorSeverity.ERROR.value,
"success": False,
"browser_instructions": extraction_result.get("browser_instructions"),
"extract_frames_first": True,
"frame_dir": frame_dir
}
# Process captured frames
frame_data = self.frame_extractor.process_captured_frames(frame_dir)
# Analyze the frames
analysis_result = self.analyze_video_content(video_id_or_url, frame_data)
# Add guidance for interpretation
analysis_result["guidance"] = """
This analysis is based on visual content extracted from the YouTube video.
It provides insights into what's shown in the video when transcript is unavailable.
The frame analyses show content from different points in the video timeline.
OCR results capture text visible in the video frames.
The consolidated analysis summarizes the overall video content based on visual cues.
"""
return analysis_result
except Exception as e:
logger.error(f"Error in complete YouTube video analysis flow: {str(e)}")
logger.error(traceback.format_exc())
return {
"video_id": video_id_or_url,
"error": f"Complete analysis flow failed: {str(e)}",
"error_type": type(e).__name__,
"severity": ErrorSeverity.ERROR.value,
"success": False
}
def create_video_frame_extractor() -> VideoFrameExtractor:
"""
Create an instance of the VideoFrameExtractor tool.
Returns:
VideoFrameExtractor: An instance of the video frame extractor tool
"""
config = get_tool_config().get("video_frame_extraction", {})
return VideoFrameExtractor(config)
def create_video_content_analyzer() -> VideoContentAnalyzer:
"""
Create an instance of the VideoContentAnalyzer tool.
Returns:
VideoContentAnalyzer: An instance of the video content analyzer tool
"""
config = get_tool_config().get("video_content_analysis", {})
return VideoContentAnalyzer(config)