JoachimVC's picture
Upload GAIA agent implementation files for assessment
c922f8b
"""
Log Analyzer for Gaia System
This module provides tools for analyzing log files generated by the Gaia system.
It can parse log files, identify patterns, correlate errors across components,
generate reports, and visualize execution flow.
Features:
- Parse and analyze log files
- Identify error patterns and frequencies
- Correlate errors across different components
- Generate diagnostic reports
- Visualize execution flow and timing
"""
import os
import re
import json
import logging
import datetime
from typing import Dict, List, Any, Optional, Tuple, Set
from collections import defaultdict, Counter
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger("gaia_log_analyzer")
# Default log directory
DEFAULT_LOG_DIR = "logs"
class LogEntry:
"""Represents a parsed log entry."""
def __init__(
self,
timestamp: datetime.datetime,
logger_name: str,
level: str,
trace_id: str,
message: str,
details: Optional[Dict[str, Any]] = None
):
self.timestamp = timestamp
self.logger_name = logger_name
self.level = level
self.trace_id = trace_id
self.message = message
self.details = details or {}
def __repr__(self):
return f"LogEntry({self.timestamp}, {self.logger_name}, {self.level}, {self.trace_id}, {self.message[:30]}...)"
@classmethod
def from_line(cls, line: str) -> Optional['LogEntry']:
"""
Parse a log line into a LogEntry object.
Args:
line: The log line to parse
Returns:
LogEntry object or None if parsing failed
"""
# Regular expression to match log lines
# Format: timestamp - logger_name - level - [trace_id] - message
pattern = r"(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2},\d{3}) - ([^-]+) - ([^-]+) - \[([^\]]+)\] - (.+)"
match = re.match(pattern, line)
if not match:
return None
timestamp_str, logger_name, level, trace_id, message = match.groups()
try:
timestamp = datetime.datetime.strptime(timestamp_str, "%Y-%m-%d %H:%M:%S,%f")
except ValueError:
timestamp = datetime.datetime.now() # Fallback
# Extract JSON details if present
details = None
if ": {" in message and message.endswith("}"):
try:
json_start = message.index(": {") + 2
json_str = message[json_start:]
details = json.loads(json_str)
message = message[:json_start-2] # Remove JSON from message
except (ValueError, json.JSONDecodeError):
pass
return cls(
timestamp=timestamp,
logger_name=logger_name.strip(),
level=level.strip(),
trace_id=trace_id.strip(),
message=message.strip(),
details=details
)
class LogAnalyzer:
"""
Analyzes log files to identify patterns and generate reports.
"""
def __init__(self, log_dir: str = DEFAULT_LOG_DIR):
"""
Initialize the log analyzer.
Args:
log_dir: Directory containing log files
"""
self.log_dir = log_dir
self.log_files = {
"main": os.path.join(log_dir, "gaia_main.log"),
"error": os.path.join(log_dir, "gaia_errors.log"),
"performance": os.path.join(log_dir, "gaia_performance.log"),
"api": os.path.join(log_dir, "gaia_api.log"),
"tool": os.path.join(log_dir, "gaia_tools.log")
}
# Initialize data structures
self.entries_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
self.errors_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
self.api_calls_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
self.tool_usage_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
self.performance_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
# Statistics
self.error_counts: Counter = Counter()
self.api_error_counts: Counter = Counter()
self.tool_error_counts: Counter = Counter()
self.trace_durations: Dict[str, float] = {}
self.trace_error_counts: Dict[str, int] = {}
# Load log files
self._load_logs()
def _load_logs(self):
"""Load and parse all log files."""
logger.info(f"Loading logs from {self.log_dir}")
for log_type, log_file in self.log_files.items():
if not os.path.exists(log_file):
logger.warning(f"Log file not found: {log_file}")
continue
logger.info(f"Parsing {log_type} log: {log_file}")
self._parse_log_file(log_file, log_type)
logger.info(f"Parsed logs for {len(self.entries_by_trace)} trace IDs")
# Calculate statistics
self._calculate_statistics()
def _parse_log_file(self, log_file: str, log_type: str):
"""
Parse a log file and extract entries.
Args:
log_file: Path to the log file
log_type: Type of log file (main, error, etc.)
"""
try:
with open(log_file, 'r', encoding='utf-8') as f:
for line in f:
entry = LogEntry.from_line(line.strip())
if entry:
# Add to trace-specific collections
self.entries_by_trace[entry.trace_id].append(entry)
# Add to type-specific collections
if log_type == "error" or entry.level in ["ERROR", "CRITICAL"]:
self.errors_by_trace[entry.trace_id].append(entry)
elif log_type == "api":
self.api_calls_by_trace[entry.trace_id].append(entry)
elif log_type == "tool":
self.tool_usage_by_trace[entry.trace_id].append(entry)
elif log_type == "performance":
self.performance_by_trace[entry.trace_id].append(entry)
except Exception as e:
logger.error(f"Error parsing log file {log_file}: {str(e)}")
def _calculate_statistics(self):
"""Calculate statistics from parsed logs."""
# Error counts by type
for trace_id, errors in self.errors_by_trace.items():
for error in errors:
if "ERROR_DETAILS" in error.message:
if error.details and "error_type" in error.details:
self.error_counts[error.details["error_type"]] += 1
else:
# Extract error type from message
error_type_match = re.search(r"ERROR: ([^-]+) -", error.message)
if error_type_match:
self.error_counts[error_type_match.group(1).strip()] += 1
else:
self.error_counts["Unknown"] += 1
# Count errors per trace
self.trace_error_counts[trace_id] = len(errors)
# API error counts
for trace_id, api_calls in self.api_calls_by_trace.items():
for call in api_calls:
if "API ERROR" in call.message:
api_name = "Unknown"
api_match = re.search(r"API ERROR: ([^-]+) -", call.message)
if api_match:
api_name = api_match.group(1).strip()
self.api_error_counts[api_name] += 1
# Tool error counts
for trace_id, tool_usages in self.tool_usage_by_trace.items():
for usage in tool_usages:
if "TOOL EXECUTION FAILURE" in usage.message:
tool_name = "Unknown"
tool_match = re.search(r"TOOL EXECUTION FAILURE: ([^-]+) -", usage.message)
if tool_match:
tool_name = tool_match.group(1).strip()
self.tool_error_counts[tool_name] += 1
# Calculate trace durations
for trace_id, entries in self.entries_by_trace.items():
if entries:
# Sort entries by timestamp
sorted_entries = sorted(entries, key=lambda e: e.timestamp)
start_time = sorted_entries[0].timestamp
end_time = sorted_entries[-1].timestamp
duration = (end_time - start_time).total_seconds()
self.trace_durations[trace_id] = duration
def get_error_summary(self) -> Dict[str, Any]:
"""
Get a summary of errors.
Returns:
Dict containing error statistics
"""
return {
"total_errors": sum(self.error_counts.values()),
"error_types": dict(self.error_counts.most_common()),
"api_errors": dict(self.api_error_counts.most_common()),
"tool_errors": dict(self.tool_error_counts.most_common()),
"traces_with_errors": len(self.errors_by_trace),
"avg_errors_per_trace": sum(self.trace_error_counts.values()) / len(self.trace_error_counts) if self.trace_error_counts else 0
}
def get_performance_summary(self) -> Dict[str, Any]:
"""
Get a summary of performance metrics.
Returns:
Dict containing performance statistics
"""
# Extract timing data from performance logs
timing_data = []
for trace_id, entries in self.performance_by_trace.items():
for entry in entries:
if "TIMING_DATA" in entry.message and entry.details:
timing_data.append(entry.details)
# Group timing data by category
timing_by_category = defaultdict(list)
for data in timing_data:
if "category" in data and "duration" in data:
timing_by_category[data["category"]].append(data["duration"])
# Calculate statistics
category_stats = {}
for category, durations in timing_by_category.items():
if durations:
category_stats[category] = {
"count": len(durations),
"avg_duration": sum(durations) / len(durations),
"min_duration": min(durations),
"max_duration": max(durations),
"total_duration": sum(durations)
}
return {
"trace_count": len(self.entries_by_trace),
"avg_trace_duration": sum(self.trace_durations.values()) / len(self.trace_durations) if self.trace_durations else 0,
"min_trace_duration": min(self.trace_durations.values()) if self.trace_durations else 0,
"max_trace_duration": max(self.trace_durations.values()) if self.trace_durations else 0,
"category_stats": category_stats
}
def get_api_summary(self) -> Dict[str, Any]:
"""
Get a summary of API usage.
Returns:
Dict containing API usage statistics
"""
# Extract API call data
api_calls = []
for trace_id, entries in self.api_calls_by_trace.items():
for entry in entries:
if "API REQUEST DETAILS" in entry.message and entry.details:
api_calls.append({
"trace_id": trace_id,
"type": "request",
"api_name": entry.details.get("api_name", "Unknown"),
"endpoint": entry.details.get("endpoint", "Unknown"),
"method": entry.details.get("method", "Unknown"),
"timestamp": entry.timestamp
})
elif "API RESPONSE DETAILS" in entry.message and entry.details:
api_calls.append({
"trace_id": trace_id,
"type": "response",
"api_name": entry.details.get("api_name", "Unknown"),
"endpoint": entry.details.get("endpoint", "Unknown"),
"status_code": entry.details.get("status_code", 0),
"duration": entry.details.get("duration", 0),
"timestamp": entry.timestamp
})
# Count API calls by name
api_call_counts = Counter()
api_error_counts = Counter()
api_durations = defaultdict(list)
for call in api_calls:
if call["type"] == "request":
api_call_counts[call["api_name"]] += 1
elif call["type"] == "response":
if call["status_code"] >= 400:
api_error_counts[call["api_name"]] += 1
if "duration" in call:
api_durations[call["api_name"]].append(call["duration"])
# Calculate average durations
api_avg_durations = {}
for api_name, durations in api_durations.items():
if durations:
api_avg_durations[api_name] = sum(durations) / len(durations)
return {
"total_api_calls": sum(api_call_counts.values()),
"api_call_counts": dict(api_call_counts.most_common()),
"api_error_counts": dict(api_error_counts.most_common()),
"api_avg_durations": api_avg_durations
}
def get_tool_summary(self) -> Dict[str, Any]:
"""
Get a summary of tool usage.
Returns:
Dict containing tool usage statistics
"""
# Extract tool usage data
tool_usages = []
for trace_id, entries in self.tool_usage_by_trace.items():
for entry in entries:
if "TOOL SELECTION DETAILS" in entry.message and entry.details:
tool_usages.append({
"trace_id": trace_id,
"type": "selection",
"tool_name": entry.details.get("tool_name", "Unknown"),
"reason": entry.details.get("reason", "Unknown"),
"timestamp": entry.timestamp
})
elif "TOOL EXECUTION DETAILS" in entry.message and entry.details:
tool_usages.append({
"trace_id": trace_id,
"type": "execution",
"tool_name": entry.details.get("tool_name", "Unknown"),
"success": entry.details.get("success", False),
"duration": entry.details.get("duration", 0),
"timestamp": entry.timestamp
})
# Count tool selections and executions
tool_selection_counts = Counter()
tool_execution_counts = Counter()
tool_success_counts = Counter()
tool_failure_counts = Counter()
tool_durations = defaultdict(list)
for usage in tool_usages:
if usage["type"] == "selection":
tool_selection_counts[usage["tool_name"]] += 1
elif usage["type"] == "execution":
tool_execution_counts[usage["tool_name"]] += 1
if usage["success"]:
tool_success_counts[usage["tool_name"]] += 1
else:
tool_failure_counts[usage["tool_name"]] += 1
if "duration" in usage:
tool_durations[usage["tool_name"]].append(usage["duration"])
# Calculate average durations and success rates
tool_avg_durations = {}
tool_success_rates = {}
for tool_name, durations in tool_durations.items():
if durations:
tool_avg_durations[tool_name] = sum(durations) / len(durations)
for tool_name, executions in tool_execution_counts.items():
if executions > 0:
successes = tool_success_counts.get(tool_name, 0)
tool_success_rates[tool_name] = (successes / executions) * 100
return {
"total_tool_selections": sum(tool_selection_counts.values()),
"total_tool_executions": sum(tool_execution_counts.values()),
"tool_selection_counts": dict(tool_selection_counts.most_common()),
"tool_execution_counts": dict(tool_execution_counts.most_common()),
"tool_success_counts": dict(tool_success_counts.most_common()),
"tool_failure_counts": dict(tool_failure_counts.most_common()),
"tool_avg_durations": tool_avg_durations,
"tool_success_rates": tool_success_rates
}
def get_trace_summary(self, trace_id: str) -> Dict[str, Any]:
"""
Get a summary of a specific trace.
Args:
trace_id: The trace ID to summarize
Returns:
Dict containing trace summary
"""
if trace_id not in self.entries_by_trace:
return {"error": f"Trace ID {trace_id} not found"}
entries = self.entries_by_trace[trace_id]
errors = self.errors_by_trace.get(trace_id, [])
api_calls = self.api_calls_by_trace.get(trace_id, [])
tool_usages = self.tool_usage_by_trace.get(trace_id, [])
performance = self.performance_by_trace.get(trace_id, [])
# Sort entries by timestamp
sorted_entries = sorted(entries, key=lambda e: e.timestamp)
# Extract workflow steps
workflow_steps = []
for entry in entries:
if "WORKFLOW STEP" in entry.message:
step_match = re.search(r"WORKFLOW STEP: ([^-]+) - (.+)", entry.message)
if step_match:
step_name, description = step_match.groups()
workflow_steps.append({
"step_name": step_name.strip(),
"description": description.strip(),
"timestamp": entry.timestamp
})
# Extract timing data
timing_data = []
for entry in performance:
if "TIMING_DATA" in entry.message and entry.details:
timing_data.append(entry.details)
# Calculate duration
duration = 0
if sorted_entries:
start_time = sorted_entries[0].timestamp
end_time = sorted_entries[-1].timestamp
duration = (end_time - start_time).total_seconds()
return {
"trace_id": trace_id,
"entry_count": len(entries),
"error_count": len(errors),
"api_call_count": len(api_calls),
"tool_usage_count": len(tool_usages),
"duration": duration,
"start_time": sorted_entries[0].timestamp if sorted_entries else None,
"end_time": sorted_entries[-1].timestamp if sorted_entries else None,
"workflow_steps": workflow_steps,
"timing_data": timing_data,
"errors": [{"message": e.message, "timestamp": e.timestamp} for e in errors]
}
def find_common_error_patterns(self) -> List[Dict[str, Any]]:
"""
Find common error patterns across traces.
Returns:
List of error patterns with frequency and examples
"""
# Extract error messages and stack traces
error_messages = []
for trace_id, errors in self.errors_by_trace.items():
for error in errors:
error_type = "Unknown"
error_msg = error.message
# Extract error type and message
if "ERROR_DETAILS" in error.message and error.details:
if "error_type" in error.details:
error_type = error.details["error_type"]
if "error_message" in error.details:
error_msg = error.details["error_message"]
else:
# Try to extract from message
error_match = re.search(r"ERROR: ([^-]+) - (.+)", error.message)
if error_match:
error_type, error_msg = error_match.groups()
error_messages.append({
"trace_id": trace_id,
"error_type": error_type.strip(),
"error_message": error_msg.strip(),
"timestamp": error.timestamp
})
# Group similar error messages
error_patterns = defaultdict(list)
for error in error_messages:
# Create a simplified key for grouping
# Remove specific values like IDs, timestamps, etc.
simplified_msg = re.sub(r'\b[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\b', '<UUID>', error["error_message"])
simplified_msg = re.sub(r'\b\d+\.\d+\.\d+\.\d+\b', '<IP>', simplified_msg)
simplified_msg = re.sub(r'\b\d{4}-\d{2}-\d{2}\b', '<DATE>', simplified_msg)
simplified_msg = re.sub(r'\b\d+\b', '<NUM>', simplified_msg)
key = f"{error['error_type']}:{simplified_msg}"
error_patterns[key].append(error)
# Create summary of patterns
patterns = []
for key, errors in error_patterns.items():
if len(errors) >= 2: # Only include patterns that occur multiple times
patterns.append({
"error_type": errors[0]["error_type"],
"pattern": errors[0]["error_message"],
"count": len(errors),
"examples": [e["trace_id"] for e in errors[:5]],
"first_occurrence": min(e["timestamp"] for e in errors),
"last_occurrence": max(e["timestamp"] for e in errors)
})
# Sort by frequency
patterns.sort(key=lambda p: p["count"], reverse=True)
return patterns
def find_correlated_errors(self) -> List[Dict[str, Any]]:
"""
Find errors that are correlated (occur together).
Returns:
List of correlated error pairs
"""
# Group errors by trace
errors_by_trace = {}
for trace_id, errors in self.errors_by_trace.items():
error_types = set()
for error in errors:
error_type = "Unknown"
if "ERROR_DETAILS" in error.message and error.details:
if "error_type" in error.details:
error_type = error.details["error_type"]
else:
# Try to extract from message
error_match = re.search(r"ERROR: ([^-]+) -", error.message)
if error_match:
error_type = error_match.group(1).strip()
error_types.add(error_type)
errors_by_trace[trace_id] = error_types
# Find co-occurring error types
error_pairs = Counter()
for trace_id, error_types in errors_by_trace.items():
if len(error_types) >= 2:
# Create pairs of error types
for error1 in error_types:
for error2 in error_types:
if error1 < error2: # Avoid duplicates
error_pairs[(error1, error2)] += 1
# Create correlation summary
correlations = []
for (error1, error2), count in error_pairs.most_common():
correlations.append({
"error_types": [error1, error2],
"count": count,
"examples": [
trace_id for trace_id, error_types in errors_by_trace.items()
if error1 in error_types and error2 in error_types
][:5]
})
return correlations
def identify_bottlenecks(self) -> List[Dict[str, Any]]:
"""
Identify performance bottlenecks.
Returns:
List of identified bottlenecks
"""
# Extract timing data
timing_data = []
for trace_id, entries in self.performance_by_trace.items():
for entry in entries:
if "TIMING_DATA" in entry.message and entry.details:
timing_data.append({
"trace_id": trace_id,
**entry.details
})
# Group by category and function/name
timing_by_key = defaultdict(list)
for data in timing_data:
if "category" in data and "duration" in data:
key = data["category"]
if "function" in data:
key += f":{data['function']}"
elif "name" in data:
key += f":{data['name']}"
timing_by_key[key].append(data["duration"])
# Calculate statistics and identify bottlenecks
bottlenecks = []
for key, durations in timing_by_key.items():
if len(durations) >= 3: # Only consider operations that occur multiple times
avg_duration = sum(durations) / len(durations)
max_duration = max(durations)
min_duration = min(durations)
total_duration = sum(durations)
# Check if this is a potential bottleneck
# Criteria: high average duration or high variability
is_bottleneck = avg_duration > 1.0 or (max_duration / min_duration > 5.0 if min_duration > 0 else False)
if is_bottleneck:
category, name = key.split(":") if ":" in key else (key, "")
bottlenecks.append({
"category": category,
"name": name,
"count": len(durations),
"avg_duration": avg_duration,
"min_duration": min_duration,
"max_duration": max_duration,
"total_duration": total_duration,
"variability": max_duration / min_duration if min_duration > 0 else float('inf')
})
# Sort by average duration
bottlenecks.sort(key=lambda b: b["avg_duration"], reverse=True)
return bottlenecks
def generate_diagnostic_report(self, output_file: str = "gaia_diagnostic_report.json") -> Dict[str, Any]:
"""
Generate a comprehensive diagnostic report.
Args:
output_file: File to save the report to
Returns:
Dict containing the diagnostic report
"""
# Collect all diagnostic information
report = {
"timestamp": datetime.datetime.now().isoformat(),
"trace_count": len(self.entries_by_trace),
"error_summary": self.get_error_summary(),
"performance_summary": self.get_performance_summary(),
"api_summary": self.get_api_summary(),
"tool_summary": self.get_tool_summary(),
"error_patterns": self.find_common_error_patterns(),
"correlated_errors": self.find_correlated_errors(),
"bottlenecks": self.identify_bottlenecks()
}
# Save to file
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(report, f, indent=2, default=str)
logger.info(f"Diagnostic report saved to {output_file}")
return report
def visualize_error_distribution(self, output_file: str = "error_distribution.png"):
"""
Visualize the distribution of errors by type.
Args:
output_file: File to save the visualization to
"""
if not self.error_counts:
logger.warning("No errors found to visualize")
return
# Get top 10 error types
top_errors = self.error_counts.most_common(10)
# Create the plot
plt.figure(figsize=(12, 6))
labels = [e[0] for e in top_errors]
values = [e[1] for e in top_errors]
plt.bar(labels, values, color='salmon')
plt.xlabel('Error Type')
plt.ylabel('Count')
plt.title('Error Distribution by Type')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
# Save the figure
plt.savefig(output_file)
logger.info(f"Error distribution visualization saved to {output_file}")
plt.close()
def visualize_performance_breakdown(self, output_file: str = "performance_breakdown.png"):
"""
Visualize the performance breakdown by category.
Args:
output_file: File to save the visualization to
"""
# Extract timing data
timing_by_category = defaultdict(list)
for trace_id, entries in self.performance_by_trace.items():
for entry in entries:
if "TIMING_DATA" in entry.message and entry.details:
if "category" in entry.details and "duration" in entry.details:
timing_by_category[entry.details["category"]].append(entry.details["duration"])
if not timing_by_category:
logger.warning("No performance data found to visualize")
return
# Calculate average durations
categories = []
avg_durations = []
for category, durations in timing_by_category.items():
if durations:
categories.append(category)
avg_durations.append(sum(durations) / len(durations))
# Sort by average duration
sorted_indices = np.argsort(avg_durations)[::-1]
categories = [categories[i] for i in sorted_indices]
avg_durations = [avg_durations[i] for i in sorted_indices]
# Create the plot
plt.figure(figsize=(12, 6))
plt.bar(categories, avg_durations, color='skyblue')
plt.xlabel('Category')
plt.ylabel('Average Duration (seconds)')
plt.title('Performance Breakdown by Category')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
# Save the figure
plt.savefig(output_file)
logger.info(f"Performance breakdown visualization saved to {output_file}")
plt.close()
def main():
"""Main entry point for the log analyzer."""
import argparse
parser = argparse.ArgumentParser(description="Gaia Log Analyzer")
parser.add_argument("--log-dir", type=str, default="logs", help="Directory containing log files")
parser.add_argument("--report", type=str, default="gaia_diagnostic_report.json", help="Output file for diagnostic report")
parser.add_argument("--trace-id", type=str, help="Specific trace ID to analyze")
parser.add_argument("--visualize", action="store_true", help="Generate visualizations")
args = parser.parse_args()
# Create the analyzer
analyzer = LogAnalyzer(log_dir=args.log_dir)
# Generate diagnostic report
report = analyzer.generate_diagnostic_report(output_file=args.report)
# Print summary
print(f"Analyzed {report['trace_count']} traces")
print(f"Found {report['error_summary']['total_errors']} errors")
print(f"Average trace duration: {report['performance_summary']['avg_trace_duration']:.2f} seconds")
# Generate visualizations if requested
if args.visualize:
analyzer.visualize_error_distribution()
analyzer.visualize_performance_breakdown()
# Analyze specific trace if requested
if args.trace_id:
trace_summary = analyzer.get_trace_summary(args.trace_id)
if "error" in trace_summary:
print(f"Error: {trace_summary['error']}")
else:
print(f"\nTrace ID: {args.trace_id}")
print(f"Duration: {trace_summary['duration']:.2f} seconds")
print(f"Errors: {trace_summary['error_count']}")
print(f"API calls: {trace_summary['api_call_count']}")
print(f"Tool usages: {trace_summary['tool_usage_count']}")
if trace_summary['workflow_steps']:
print("\nWorkflow steps:")
for step in trace_summary['workflow_steps']:
print(f"- {step['step_name']}: {step['description']}")
if trace_summary['errors']:
print("\nErrors:")
for error in trace_summary['errors']:
print(f"- {error['message']}")
if __name__ == "__main__":
main()