K00B404's picture
Create app.py
13ad507 verified
import gradio as gr
from transformers import AutoTokenizer, pipeline
import torch
# Load the model and tokenizer
model = "K00B404/DeepQwenScalerPlus"
tokenizer = AutoTokenizer.from_pretrained(model)
# Initialize the pipeline for text generation
pipeline = pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
# Function to interact with the model
def generate_response(user_message):
messages = [
{"role": "system", "content": "You are a reasoning coder and specialize in generating Python scripts"},
{"role": "user", "content": user_message}
]
# Tokenize the input message
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Get the model's output
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
return outputs[0]["generated_text"]
# Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="Ask a Question", placeholder="Enter your question here..."),
outputs=gr.Textbox(label="Generated Response"),
title="DeepQwenScalerPlus Gradio App",
description="Interact with the DeepQwenScalerPlus model to get Python script generation responses."
)
# Launch the Gradio app
iface.launch()