Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, pipeline | |
import torch | |
# Load the model and tokenizer | |
model = "K00B404/DeepQwenScalerPlus" | |
tokenizer = AutoTokenizer.from_pretrained(model) | |
# Initialize the pipeline for text generation | |
pipeline = pipeline( | |
"text-generation", | |
model=model, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
# Function to interact with the model | |
def generate_response(user_message): | |
messages = [ | |
{"role": "system", "content": "You are a reasoning coder and specialize in generating Python scripts"}, | |
{"role": "user", "content": user_message} | |
] | |
# Tokenize the input message | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
# Get the model's output | |
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
return outputs[0]["generated_text"] | |
# Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(label="Ask a Question", placeholder="Enter your question here..."), | |
outputs=gr.Textbox(label="Generated Response"), | |
title="DeepQwenScalerPlus Gradio App", | |
description="Interact with the DeepQwenScalerPlus model to get Python script generation responses." | |
) | |
# Launch the Gradio app | |
iface.launch() |