Spaces:
Sleeping
Sleeping
# version 2: added custom prompts. | |
import os | |
import json | |
import sqlite3 | |
from datetime import datetime | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
from langchain_groq import ChatGroq | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.prompts import PromptTemplate | |
from vectorize_documents import embeddings # If needed elsewhere | |
# Load config | |
working_dir = os.path.dirname(os.path.abspath(__file__)) | |
config_data = json.load(open(f"{working_dir}/config.json")) | |
GROQ_API_KEY = config_data["GROQ_API_KEY"] | |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY | |
# Set up the database | |
def setup_db(): | |
conn = sqlite3.connect("chat_history.db", check_same_thread=False) | |
cursor = conn.cursor() | |
cursor.execute(""" | |
CREATE TABLE IF NOT EXISTS chat_histories ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
username TEXT, | |
timestamp TEXT, | |
day TEXT, | |
user_message TEXT, | |
assistant_response TEXT | |
) | |
""") | |
conn.commit() | |
return conn | |
# Set up vectorstore | |
def setup_vectorstore(): | |
embeddings = HuggingFaceEmbeddings() | |
vectorstore = Chroma(persist_directory="Vector_db", embedding_function=embeddings) | |
return vectorstore | |
# Custom prompt template | |
custom_prompt_template = PromptTemplate.from_template(""" | |
You are a helpful assistant that helps users choose laptops. | |
1. Analyze the user's query, take information from vectordb and then give top 3 laptops to user from Relevent information that is context. | |
2. Keep suggestions clear and concise with names, specs, and reasons only from relevant information context. | |
Relevant Information: | |
{context} | |
Chat History: | |
{chat_history} | |
User Query: | |
{question} | |
Assistant Response: | |
""") | |
# Set up the chatbot chain with a specific model | |
def chat_chain(vectorstore, model_name): | |
llm = ChatGroq(model=model_name, temperature=0.3) | |
retriever = vectorstore.as_retriever() | |
memory = ConversationBufferMemory( | |
llm=llm, | |
output_key="answer", | |
memory_key="chat_history", | |
return_messages=True | |
) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=retriever, | |
memory=memory, | |
combine_docs_chain_kwargs={"prompt": custom_prompt_template}, | |
return_source_documents=True, | |
verbose=True | |
) | |
return chain | |
# Streamlit UI setup | |
st.set_page_config(page_title="ByteX-Ai", page_icon="🤖AI", layout="centered") | |
st.title("🤖 ByteX-Ai") | |
st.subheader("Hey! Get your Laptop!!") | |
# Initialize DB connection | |
if "conn" not in st.session_state: | |
st.session_state.conn = setup_db() | |
# Prompt user to log in | |
if "username" not in st.session_state: | |
username = st.text_input("Enter your name to proceed:") | |
if username: | |
with st.spinner("Loading chatbot interface... Please wait."): | |
st.session_state.username = username | |
st.session_state.chat_history = [] | |
st.session_state.vectorstore = setup_vectorstore() | |
st.success(f"Welcome, {username}! Now select a model to start chatting.") | |
else: | |
username = st.session_state.username | |
# Model selection options | |
model_options = [ | |
"gemma2-9b-it", | |
"llama-3.1-8b-instant", | |
"llama3-70b-8192", | |
"llama3-8b-8192" | |
] | |
selected_model = st.selectbox("Choose a model:", model_options) | |
# Ensure vectorstore exists | |
if "vectorstore" not in st.session_state: | |
st.session_state.vectorstore = setup_vectorstore() | |
# Set or update the selected model | |
if "selected_model" not in st.session_state: | |
st.session_state.selected_model = selected_model | |
# Reset conversational_chain if model changes or not yet initialized | |
if ("conversational_chain" not in st.session_state) or (st.session_state.selected_model != selected_model): | |
st.session_state.selected_model = selected_model | |
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, selected_model) | |
st.session_state.chat_history = [] | |
# Reset chat manually | |
if st.button("🔄 Reset Chat"): | |
st.session_state.chat_history = [] | |
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, st.session_state.selected_model) | |
st.success("Chat reset!") | |
# Show chat UI | |
if "username" in st.session_state: | |
st.subheader(f"Hello {username}, start your query below!") | |
if st.session_state.chat_history: | |
for message in st.session_state.chat_history: | |
if message['role'] == 'user': | |
with st.chat_message("user"): | |
st.markdown(message["content"]) | |
elif message['role'] == 'assistant': | |
with st.chat_message("assistant"): | |
st.markdown(message["content"]) | |
user_input = st.chat_input("Ask AI....") | |
if user_input: | |
with st.spinner("Processing your query... Please wait."): | |
st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
with st.chat_message("assistant"): | |
response = st.session_state.conversational_chain({"question": user_input}) | |
assistant_response = response["answer"] | |
st.markdown(assistant_response) | |
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) | |
# Version 1: working properly but there is no prompt refinement. | |
# import os | |
# import json | |
# import sqlite3 | |
# from datetime import datetime | |
# import streamlit as st | |
# from langchain_huggingface import HuggingFaceEmbeddings | |
# from langchain_chroma import Chroma | |
# from langchain_groq import ChatGroq | |
# from langchain.memory import ConversationBufferMemory | |
# from langchain.chains import ConversationalRetrievalChain | |
# from vectorize_documents import embeddings # If needed elsewhere | |
# # Load config | |
# working_dir = os.path.dirname(os.path.abspath(__file__)) | |
# config_data = json.load(open(f"{working_dir}/config.json")) | |
# GROQ_API_KEY = config_data["GROQ_API_KEY"] | |
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY | |
# # Set up the database | |
# def setup_db(): | |
# conn = sqlite3.connect("chat_history.db", check_same_thread=False) | |
# cursor = conn.cursor() | |
# cursor.execute(""" | |
# CREATE TABLE IF NOT EXISTS chat_histories ( | |
# id INTEGER PRIMARY KEY AUTOINCREMENT, | |
# username TEXT, | |
# timestamp TEXT, | |
# day TEXT, | |
# user_message TEXT, | |
# assistant_response TEXT | |
# ) | |
# """) | |
# conn.commit() | |
# return conn | |
# # Set up vectorstore | |
# def setup_vectorstore(): | |
# embeddings = HuggingFaceEmbeddings() | |
# vectorstore = Chroma(persist_directory="Vector_db", embedding_function=embeddings) | |
# return vectorstore | |
# # Set up the chatbot chain with a specific model | |
# def chat_chain(vectorstore, model_name): | |
# llm = ChatGroq(model=model_name, temperature=0) | |
# retriever = vectorstore.as_retriever() | |
# memory = ConversationBufferMemory( | |
# llm=llm, | |
# output_key="answer", | |
# memory_key="chat_history", | |
# return_messages=True | |
# ) | |
# chain = ConversationalRetrievalChain.from_llm( | |
# llm=llm, | |
# retriever=retriever, | |
# chain_type="stuff", | |
# memory=memory, | |
# verbose=True, | |
# return_source_documents=True | |
# ) | |
# return chain | |
# # Streamlit UI setup | |
# st.set_page_config(page_title="ByteX-Ai", page_icon="🤖AI", layout="centered") | |
# st.title("🤖 ByteX-Ai") | |
# st.subheader("Hey! Get your Laptop!!") | |
# # Initialize DB connection | |
# if "conn" not in st.session_state: | |
# st.session_state.conn = setup_db() | |
# # Prompt user to log in | |
# if "username" not in st.session_state: | |
# username = st.text_input("Enter your name to proceed:") | |
# if username: | |
# with st.spinner("Loading chatbot interface... Please wait."): | |
# st.session_state.username = username | |
# st.session_state.chat_history = [] | |
# st.session_state.vectorstore = setup_vectorstore() | |
# st.success(f"Welcome, {username}! Now select a model to start chatting.") | |
# else: | |
# username = st.session_state.username | |
# # Model selection options | |
# model_options = [ | |
# "gemma2-9b-it", | |
# "llama-3.1-8b-instant", | |
# "llama3-70b-8192", | |
# "llama3-8b-8192" | |
# ] | |
# # Model dropdown | |
# selected_model = st.selectbox("Choose a model:", model_options) | |
# # Ensure vectorstore exists | |
# if "vectorstore" not in st.session_state: | |
# st.session_state.vectorstore = setup_vectorstore() | |
# # Set or update the selected model | |
# if "selected_model" not in st.session_state: | |
# st.session_state.selected_model = selected_model | |
# # Reset conversational_chain if model changes or not yet initialized | |
# if ("conversational_chain" not in st.session_state) or (st.session_state.selected_model != selected_model): | |
# st.session_state.selected_model = selected_model | |
# st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, selected_model) | |
# st.session_state.chat_history = [] | |
# # Reset chat manually | |
# if st.button("🔄 Reset Chat"): | |
# st.session_state.chat_history = [] | |
# st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, st.session_state.selected_model) | |
# st.success("Chat reset!") | |
# # Show chat UI | |
# if "username" in st.session_state: | |
# st.subheader(f"Hello {username}, start your query below!") | |
# if st.session_state.chat_history: | |
# for message in st.session_state.chat_history: | |
# if message['role'] == 'user': | |
# with st.chat_message("user"): | |
# st.markdown(message["content"]) | |
# elif message['role'] == 'assistant': | |
# with st.chat_message("assistant"): | |
# st.markdown(message["content"]) | |
# user_input = st.chat_input("Ask AI....") | |
# if user_input: | |
# with st.spinner("Processing your query... Please wait."): | |
# st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
# with st.chat_message("user"): | |
# st.markdown(user_input) | |
# with st.chat_message("assistant"): | |
# response = st.session_state.conversational_chain({"question": user_input}) | |
# assistant_response = response["answer"] | |
# st.markdown(assistant_response) | |
# st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) | |