Spaces:
Runtime error
Runtime error
import inspect | |
import math | |
from typing import Callable, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.image_processor import IPAdapterMaskProcessor | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available | |
from diffusers.utils.torch_utils import is_torch_version, maybe_allow_in_graph | |
from diffusers.models.attention import Attention | |
from diffusers.models.embeddings import Timesteps, TimestepEmbedding, PixArtAlphaTextProjection | |
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module): | |
def __init__(self, embedding_dim, pooled_projection_dim): | |
super().__init__() | |
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") | |
def forward(self, timestep, guidance, pooled_projection): | |
timesteps_proj = self.time_proj(timestep) | |
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D) | |
if (guidance >= 0).all(): | |
guidance_proj = self.time_proj(guidance) | |
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D) | |
time_guidance_emb = timesteps_emb + guidance_emb | |
pooled_projections = self.text_embedder(pooled_projection) | |
conditioning = time_guidance_emb + pooled_projections | |
else: | |
pooled_projections = self.text_embedder(pooled_projection) | |
conditioning = timesteps_emb + pooled_projections | |
return conditioning | |
def apply_rotary_emb( | |
x: torch.Tensor, | |
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
use_real: bool = True, | |
use_real_unbind_dim: int = -1, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | |
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | |
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | |
tensors contain rotary embeddings and are returned as real tensors. | |
Args: | |
x (`torch.Tensor`): | |
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply | |
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
""" | |
if use_real: | |
cos, sin = freqs_cis # [S, D] | |
if cos.ndim == 2: | |
cos = cos[None, None] | |
else: | |
cos = cos.unsqueeze(1) | |
if sin.ndim == 2: | |
sin = sin[None, None] | |
else: | |
sin = sin.unsqueeze(1) | |
cos, sin = cos.to(x.device), sin.to(x.device) | |
if use_real_unbind_dim == -1: | |
# Used for flux, cogvideox, hunyuan-dit | |
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] | |
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
elif use_real_unbind_dim == -2: | |
# Used for Stable Audio | |
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2] | |
x_rotated = torch.cat([-x_imag, x_real], dim=-1) | |
else: | |
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") | |
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
return out | |
else: | |
# used for lumina | |
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) | |
freqs_cis = freqs_cis.unsqueeze(2) | |
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) | |
return x_out.type_as(x) | |
class FluxAttnSharedProcessor2_0: | |
"""Attention processor used typically in processing the SD3-like self-attention projections.""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
data_num_per_group: Optional[int] = 1, | |
max_sequence_length: Optional[int] = 512, | |
mix_attention: bool = True, | |
cond_latents = None, | |
cond_image_rotary_emb = None, | |
work_mode = None, | |
mask_cond = None, | |
) -> torch.FloatTensor: | |
with_cond = cond_latents is not None and mix_attention | |
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
# `sample` projections. | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
if encoder_hidden_states is not None: | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
# attention | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
if image_rotary_emb is not None: | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
if with_cond: | |
cond_bs = cond_latents.shape[0] | |
# update condition | |
cond_query = attn.to_q(cond_latents) | |
cond_query = cond_query.view(cond_bs, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
cond_query = attn.norm_q(cond_query) | |
cond_query = apply_rotary_emb(cond_query, cond_image_rotary_emb) | |
cond_query = torch.cat(cond_query.chunk(len(cond_query), dim=0), dim=2) | |
cond_key = attn.to_k(cond_latents) | |
cond_value = attn.to_v(cond_latents) | |
cond_key = cond_key.view(cond_bs, -1, attn.heads, head_dim).transpose(1, 2) | |
cond_value = cond_value.view(cond_bs, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_k is not None: | |
cond_key = attn.norm_k(cond_key) | |
cond_key = apply_rotary_emb(cond_key, cond_image_rotary_emb) | |
cond_key = torch.cat(cond_key.chunk(len(cond_key), dim=0), dim=2) | |
cond_value = torch.cat(cond_value.chunk(len(cond_value), dim=0), dim=2) | |
if data_num_per_group > 1 and mix_attention: | |
E = max_sequence_length # according to text len | |
key_enc, key_hid = key[:, :, :E], key[:, :, E:] | |
value_enc, value_hid = value[:, :, :E], value[:, :, E:] | |
key_layer = key_hid.chunk(data_num_per_group, dim=0) | |
key_layer = torch.cat(key_layer, dim=2).repeat(data_num_per_group, 1, 1, 1) | |
value_layer = value_hid.chunk(data_num_per_group, dim=0) | |
value_layer = torch.cat(value_layer, dim=2).repeat(data_num_per_group, 1, 1, 1) | |
key = torch.cat([key_enc, key_layer], dim=2) | |
value = torch.cat([value_enc, value_layer], dim=2) | |
elif data_num_per_group == 1 and mix_attention and with_cond: | |
E = max_sequence_length # according to text len | |
key_enc, key_hid = key[:, :, :E], key[:, :, E:] | |
value_enc, value_hid = value[:, :, :E], value[:, :, E:] | |
# todo: support bs != 1 | |
key_layer = torch.cat([key_hid, cond_key], dim=2) | |
value_layer = torch.cat([value_hid, cond_value], dim=2) | |
key = torch.cat([key_enc, key_layer], dim=2) | |
value = torch.cat([value_enc, value_layer], dim=2) | |
# concat query | |
query_enc, query_hid = query[:, :, :E], query[:, :, E:] | |
query_layer = torch.cat([query_hid, cond_query], dim=2) | |
query = torch.cat([query_enc, query_layer], dim=2) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
if encoder_hidden_states is not None: | |
if with_cond: | |
encoder_hidden_states, hidden_states, cond_latents = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] : -cond_latents.shape[1]*cond_bs], | |
hidden_states[:, -cond_latents.shape[1]*cond_bs :], | |
) | |
cond_latents = cond_latents.view(cond_bs, cond_latents.shape[1] // cond_bs, cond_latents.shape[2]) | |
cond_latents = attn.to_out[0](cond_latents) | |
cond_latents = attn.to_out[1](cond_latents) | |
else: | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1]:], | |
) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
if with_cond: | |
return hidden_states, encoder_hidden_states, cond_latents | |
return hidden_states, encoder_hidden_states | |
else: | |
if with_cond: | |
hidden_states, cond_latents = ( | |
hidden_states[:, : -cond_latents.shape[1]*cond_bs], | |
hidden_states[:, -cond_latents.shape[1]*cond_bs :], | |
) | |
cond_latents = cond_latents.view(cond_bs, cond_latents.shape[1] // cond_bs, cond_latents.shape[2]) | |
return hidden_states, cond_latents | |
return hidden_states | |