Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import random | |
import os | |
import subprocess | |
import logging | |
import safetensors | |
##################################################### | |
# Forced Diffusers upgrade when cache was being stubborn; probably not needed now | |
# force = subprocess.run("pip install -U diffusers", shell=True) | |
# force = subprocess.run("pip install git+https://github.com/huggingface/diffusers.git", shell=True) | |
# force = subprocess.run("pip install git+https://github.com/huggingface/transformers.git", shell=True) | |
force = subprocess.run("git lfs install", shell=True) | |
##################################################### | |
import transformers | |
import diffusers | |
from diffusers import DiffusionPipeline | |
import bitsandbytes | |
from diffusers.quantizers import PipelineQuantizationConfig | |
from diffusers.utils import load_image | |
from diffusers import FluxKontextPipeline | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub import create_repo, upload_folder | |
from huggingface_hub.utils._runtime import dump_environment_info | |
from safetensors import safe_open | |
##################################################### | |
MAX_SEED = np.iinfo(np.int32).max | |
API_TOKEN = os.environ['HF_TOKEN'] | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False') | |
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1') | |
dump_environment_info() | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
##################################################### | |
# TESTING TWO QUANTIZATION METHODS | |
# 1) If FP8 is supported; `torchao` for quantization | |
# quant_config = PipelineQuantizationConfig( | |
# quant_backend="torchao", | |
# quant_kwargs={"quant_type": "float8dq_e4m3_row"}, | |
# components_to_quantize=["transformer"] | |
# ) | |
# 2) Otherwise, standard 4-bit quantization with bitsandbytes | |
# quant_config = PipelineQuantizationConfig( | |
# quant_backend="bitsandbytes_4bit", | |
# quant_kwargs={"load_in_4bit": True, "bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_quant_type": "nf4"}, | |
# components_to_quantize=["transformer"] | |
# ) | |
try: | |
# Set max memory usage for ZeroGPU | |
torch.cuda.set_per_process_memory_fraction(1.0) | |
torch.set_float32_matmul_precision("high") | |
except Exception as e: | |
print(f"Error setting memory usage: {e}") | |
##################################################### | |
# Load the pipeline with the specified quantization configuration. | |
# We use bfloat16 as the base dtype for mixed-precision inference. | |
# HF Spaces VRAM (50 GB) is sufficient to hold the entire pipeline (31.424 GB), | |
# Leave the entire pipeline to the GPU for the best performance. | |
# FLUX.1 Dev Kontext Lightning Model / 8-Steps | |
kontext_model = "LPX55/FLUX.1_Kontext-Lightning" | |
pipe = FluxKontextPipeline.from_pretrained( | |
"LPX55/FLUX.1_Kontext-Lightning", | |
torch_dtype=torch.float16 | |
).to("cuda") | |
# Save as a single `.safetensors` file | |
pipe.save_pretrained( | |
"./flux_16bit", | |
safe_serialization=True, | |
max_shard_size="100GB" # Forces all shards into one file (no split files) | |
) | |
local_folder = "./flux_16bit" | |
hub_repo_name = "LPX55/FLUX.1_Kontext-Lightning" | |
# create_repo(hub_repo_name, exist_ok=True, private=False) | |
# with safe_open("./flux_16bit/model.safetensors", framework="pt", device="cuda") as f: | |
# for k in f.keys(): | |
# print(k, f.get_slice(k).shape) | |
upload_folder( | |
folder_path=local_folder, | |
path_in_repo="float16", | |
repo_id=hub_repo_name, | |
repo_type="model", | |
commit_message="Upload half-precision FLUX.1 Kontext Lightning model", | |
token=API_TOKEN | |
) | |
################################################### | |
# SECTION FOR LORA(S); SKIP FOR NOW | |
# try: | |
# repo_name = "" | |
# ckpt_name = "" | |
# pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name), adapter_name="A1") | |
# pipe.set_adapters(["A1"], adapter_weights=[0.5]) | |
# pipe.fuse_lora(adapter_names=["A1"], lora_scale=1.0) | |
# pipe.unload_lora_weights() | |
# except Exception as e: | |
# print(f"Error while loading Lora: {e}") | |
##################################################### | |
def concatenate_images(images, direction="horizontal"): | |
""" | |
Concatenate multiple PIL images either horizontally or vertically. | |
Args: | |
images: List of PIL Images | |
direction: "horizontal" or "vertical" | |
Returns: | |
PIL Image: Concatenated image | |
""" | |
if not images: | |
return None | |
# Filter out None images | |
valid_images = [img for img in images if img is not None] | |
if not valid_images: | |
return None | |
if len(valid_images) == 1: | |
return valid_images[0].convert("RGB") | |
# Convert all images to RGB | |
valid_images = [img.convert("RGB") for img in valid_images] | |
if direction == "horizontal": | |
# Calculate total width and max height | |
total_width = sum(img.width for img in valid_images) | |
max_height = max(img.height for img in valid_images) | |
# Create new image | |
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255)) | |
# Paste images | |
x_offset = 0 | |
for img in valid_images: | |
# Center image vertically if heights differ | |
y_offset = (max_height - img.height) // 2 | |
concatenated.paste(img, (x_offset, y_offset)) | |
x_offset += img.width | |
else: # vertical | |
# Calculate max width and total height | |
max_width = max(img.width for img in valid_images) | |
total_height = sum(img.height for img in valid_images) | |
# Create new image | |
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255)) | |
# Paste images | |
y_offset = 0 | |
for img in valid_images: | |
# Center image horizontally if widths differ | |
x_offset = (max_width - img.width) // 2 | |
concatenated.paste(img, (x_offset, y_offset)) | |
y_offset += img.height | |
return concatenated | |
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=8, width=1024, height=1024, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Handle input_images - it could be a single image or a list of images | |
if input_images is None: | |
raise gr.Error("Please upload at least one image.") | |
# If it's a single image (not a list), convert to list | |
if not isinstance(input_images, list): | |
input_images = [input_images] | |
# Filter out None images | |
valid_images = [img[0] for img in input_images if img is not None] | |
if not valid_images: | |
raise gr.Error("Please upload at least one valid image.") | |
# Concatenate images horizontally | |
concatenated_image = concatenate_images(valid_images, "horizontal") | |
if concatenated_image is None: | |
raise gr.Error("Failed to process the input images.") | |
# original_width, original_height = concatenated_image.size | |
# if original_width >= original_height: | |
# new_width = 1024 | |
# new_height = int(original_height * (new_width / original_width)) | |
# new_height = round(new_height / 64) * 64 | |
# else: | |
# new_height = 1024 | |
# new_width = int(original_width * (new_height / original_height)) | |
# new_width = round(new_width / 64) * 64 | |
#concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS) | |
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources." | |
image = pipe( | |
image=concatenated_image, | |
prompt=final_prompt, | |
guidance_scale=guidance_scale, | |
width=width, | |
height=height, | |
max_area=width * height, | |
num_inference_steps=steps, | |
generator=torch.Generator().manual_seed(seed), | |
).images[0] | |
return image, seed, gr.update(visible=True) | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 86vw; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 Kontext | Lightning 8-Step Model ⚡ | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_images = gr.Gallery( | |
label="Upload image(s) for editing", | |
show_label=True, | |
elem_id="gallery_input", | |
columns=3, | |
rows=2, | |
object_fit="contain", | |
height="auto", | |
file_types=['image'], | |
type='pil' | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Accordion("Advanced Settings", open=True): | |
with gr.Group(): | |
width = gr.Slider( | |
label="W", | |
minimum=512, | |
maximum=2560, | |
step=64, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="H", | |
minimum=512, | |
maximum=2560, | |
step=64, | |
value=1024, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=10, | |
step=0.1, | |
value=2.5, | |
) | |
input_steps = gr.Slider( | |
label="Steps", | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=16, | |
) | |
with gr.Column(): | |
result = gr.Image(label="Result", show_label=False, interactive=False) | |
reuse_button = gr.Button("Reuse this image", visible=False) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale, input_steps, width, height], | |
outputs = [result, seed, reuse_button] | |
) | |
reuse_button.click( | |
fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery | |
inputs = [result], | |
outputs = [input_images] | |
) | |
demo.queue().launch() |