LiuZichen's picture
update
f460ce6
import os
import random
import tempfile
import warnings
from contextlib import suppress
from pathlib import Path
import cv2
import numpy as np
import torch
from huggingface_hub import constants, hf_hub_download
from torch.hub import get_dir, download_url_to_file
from ast import literal_eval
import torch.nn.functional as F
import torch.nn as nn
def safe_step(x, step=2):
y = x.astype(np.float32) * float(step + 1)
y = y.astype(np.int32).astype(np.float32) / float(step)
return y
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"]
def get_upscale_method(method_str):
assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}"
return getattr(cv2, method_str)
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'):
if skip_hwc3:
img = input_image
else:
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
if resolution == 0:
return img, lambda x: x
k = float(resolution) / float(min(H_raw, W_raw))
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode)
def remove_pad(x):
return safer_memory(x[:H_target, :W_target, ...])
return safer_memory(img_padded), remove_pad
def common_input_validate(input_image, output_type, **kwargs):
if "img" in kwargs:
warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning)
input_image = kwargs.pop("img")
if "return_pil" in kwargs:
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
output_type = "pil" if kwargs["return_pil"] else "np"
if type(output_type) is bool:
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
if output_type:
output_type = "pil"
if input_image is None:
raise ValueError("input_image must be defined.")
if not isinstance(input_image, np.ndarray):
input_image = np.array(input_image, dtype=np.uint8)
output_type = output_type or "pil"
else:
output_type = output_type or "np"
return (input_image, output_type)
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def get_intensity_mask(image_array, lower_bound, upper_bound):
mask = image_array[:, :, 0]
mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0)
mask = np.expand_dims(mask, 2).repeat(3, axis=2)
return mask
def combine_layers(base_layer, top_layer):
mask = top_layer.astype(bool)
temp = 1 - (1 - top_layer) * (1 - base_layer)
result = base_layer * (~mask) + temp * mask
return result
@torch.jit.script
def mish(input):
"""
Applies the mish function element-wise:
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x)))
See additional documentation for mish class.
"""
return input * torch.tanh(F.softplus(input))
@torch.jit.script
def smish(input):
"""
Applies the mish function element-wise:
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(sigmoid(x))))
See additional documentation for mish class.
"""
return input * torch.tanh(torch.log(1+torch.sigmoid(input)))
class Mish(nn.Module):
"""
Applies the mish function element-wise:
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x)))
Shape:
- Input: (N, *) where * means, any number of additional
dimensions
- Output: (N, *), same shape as the input
Examples:
>>> m = Mish()
>>> input = torch.randn(2)
>>> output = m(input)
Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html
"""
def __init__(self):
"""
Init method.
"""
super().__init__()
def forward(self, input):
"""
Forward pass of the function.
"""
if torch.__version__ >= "1.9":
return F.mish(input)
else:
return mish(input)
class Smish(nn.Module):
"""
Applies the mish function element-wise:
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x)))
Shape:
- Input: (N, *) where * means, any number of additional
dimensions
- Output: (N, *), same shape as the input
Examples:
>>> m = Mish()
>>> input = torch.randn(2)
>>> output = m(input)
Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html
"""
def __init__(self):
"""
Init method.
"""
super().__init__()
def forward(self, input):
"""
Forward pass of the function.
"""
return smish(input)