Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import tempfile | |
| import warnings | |
| from contextlib import suppress | |
| from pathlib import Path | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from huggingface_hub import constants, hf_hub_download | |
| from torch.hub import get_dir, download_url_to_file | |
| from ast import literal_eval | |
| import torch.nn.functional as F | |
| import torch.nn as nn | |
| def safe_step(x, step=2): | |
| y = x.astype(np.float32) * float(step + 1) | |
| y = y.astype(np.int32).astype(np.float32) / float(step) | |
| return y | |
| def nms(x, t, s): | |
| x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
| f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
| f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
| f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
| f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
| y = np.zeros_like(x) | |
| for f in [f1, f2, f3, f4]: | |
| np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
| z = np.zeros_like(y, dtype=np.uint8) | |
| z[y > t] = 255 | |
| return z | |
| def safer_memory(x): | |
| # Fix many MAC/AMD problems | |
| return np.ascontiguousarray(x.copy()).copy() | |
| UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"] | |
| def get_upscale_method(method_str): | |
| assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}" | |
| return getattr(cv2, method_str) | |
| def pad64(x): | |
| return int(np.ceil(float(x) / 64.0) * 64 - x) | |
| def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'): | |
| if skip_hwc3: | |
| img = input_image | |
| else: | |
| img = HWC3(input_image) | |
| H_raw, W_raw, _ = img.shape | |
| if resolution == 0: | |
| return img, lambda x: x | |
| k = float(resolution) / float(min(H_raw, W_raw)) | |
| H_target = int(np.round(float(H_raw) * k)) | |
| W_target = int(np.round(float(W_raw) * k)) | |
| img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA) | |
| H_pad, W_pad = pad64(H_target), pad64(W_target) | |
| img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode) | |
| def remove_pad(x): | |
| return safer_memory(x[:H_target, :W_target, ...]) | |
| return safer_memory(img_padded), remove_pad | |
| def common_input_validate(input_image, output_type, **kwargs): | |
| if "img" in kwargs: | |
| warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning) | |
| input_image = kwargs.pop("img") | |
| if "return_pil" in kwargs: | |
| warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) | |
| output_type = "pil" if kwargs["return_pil"] else "np" | |
| if type(output_type) is bool: | |
| warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") | |
| if output_type: | |
| output_type = "pil" | |
| if input_image is None: | |
| raise ValueError("input_image must be defined.") | |
| if not isinstance(input_image, np.ndarray): | |
| input_image = np.array(input_image, dtype=np.uint8) | |
| output_type = output_type or "pil" | |
| else: | |
| output_type = output_type or "np" | |
| return (input_image, output_type) | |
| def HWC3(x): | |
| assert x.dtype == np.uint8 | |
| if x.ndim == 2: | |
| x = x[:, :, None] | |
| assert x.ndim == 3 | |
| H, W, C = x.shape | |
| assert C == 1 or C == 3 or C == 4 | |
| if C == 3: | |
| return x | |
| if C == 1: | |
| return np.concatenate([x, x, x], axis=2) | |
| if C == 4: | |
| color = x[:, :, 0:3].astype(np.float32) | |
| alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
| y = color * alpha + 255.0 * (1.0 - alpha) | |
| y = y.clip(0, 255).astype(np.uint8) | |
| return y | |
| def get_intensity_mask(image_array, lower_bound, upper_bound): | |
| mask = image_array[:, :, 0] | |
| mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0) | |
| mask = np.expand_dims(mask, 2).repeat(3, axis=2) | |
| return mask | |
| def combine_layers(base_layer, top_layer): | |
| mask = top_layer.astype(bool) | |
| temp = 1 - (1 - top_layer) * (1 - base_layer) | |
| result = base_layer * (~mask) + temp * mask | |
| return result | |
| def mish(input): | |
| """ | |
| Applies the mish function element-wise: | |
| mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x))) | |
| See additional documentation for mish class. | |
| """ | |
| return input * torch.tanh(F.softplus(input)) | |
| def smish(input): | |
| """ | |
| Applies the mish function element-wise: | |
| mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(sigmoid(x)))) | |
| See additional documentation for mish class. | |
| """ | |
| return input * torch.tanh(torch.log(1+torch.sigmoid(input))) | |
| class Mish(nn.Module): | |
| """ | |
| Applies the mish function element-wise: | |
| mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x))) | |
| Shape: | |
| - Input: (N, *) where * means, any number of additional | |
| dimensions | |
| - Output: (N, *), same shape as the input | |
| Examples: | |
| >>> m = Mish() | |
| >>> input = torch.randn(2) | |
| >>> output = m(input) | |
| Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html | |
| """ | |
| def __init__(self): | |
| """ | |
| Init method. | |
| """ | |
| super().__init__() | |
| def forward(self, input): | |
| """ | |
| Forward pass of the function. | |
| """ | |
| if torch.__version__ >= "1.9": | |
| return F.mish(input) | |
| else: | |
| return mish(input) | |
| class Smish(nn.Module): | |
| """ | |
| Applies the mish function element-wise: | |
| mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x))) | |
| Shape: | |
| - Input: (N, *) where * means, any number of additional | |
| dimensions | |
| - Output: (N, *), same shape as the input | |
| Examples: | |
| >>> m = Mish() | |
| >>> input = torch.randn(2) | |
| >>> output = m(input) | |
| Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html | |
| """ | |
| def __init__(self): | |
| """ | |
| Init method. | |
| """ | |
| super().__init__() | |
| def forward(self, input): | |
| """ | |
| Forward pass of the function. | |
| """ | |
| return smish(input) |