Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import copy | |
| import logging | |
| import math | |
| import os | |
| import shutil | |
| from contextlib import nullcontext | |
| from pathlib import Path | |
| import re | |
| from safetensors.torch import save_file | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed | |
| import diffusers | |
| from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import ( | |
| cast_training_params, | |
| compute_density_for_timestep_sampling, | |
| compute_loss_weighting_for_sd3, | |
| ) | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| from diffusers.utils import ( | |
| check_min_version, | |
| is_wandb_available, | |
| ) | |
| from src.prompt_helper import * | |
| from src.lora_helper import * | |
| from src.jsonl_datasets_kontext_edge import make_train_dataset_inpaint_mask, collate_fn | |
| from src.pipeline_flux_kontext_control import ( | |
| FluxKontextControlPipeline, | |
| resize_position_encoding, | |
| prepare_latent_subject_ids, | |
| PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| from src.transformer_flux import FluxTransformer2DModel | |
| from diffusers.models.attention_processor import FluxAttnProcessor2_0 | |
| from src.layers import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor | |
| from tqdm.auto import tqdm | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.31.0.dev0") | |
| logger = get_logger(__name__) | |
| def log_validation( | |
| pipeline, | |
| args, | |
| accelerator, | |
| pipeline_args, | |
| step, | |
| torch_dtype, | |
| is_final_validation=False, | |
| ): | |
| logger.info( | |
| f"Running validation... Strict per-case evaluation for image, spatial image, and prompt." | |
| ) | |
| pipeline = pipeline.to(accelerator.device) | |
| pipeline.set_progress_bar_config(disable=True) | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None | |
| autocast_ctx = nullcontext() | |
| # Build per-case evaluation: require equal lengths for image, spatial image, and prompt | |
| if args.validation_images is None or args.validation_images == ['None']: | |
| raise ValueError("validation_images must be provided and non-empty") | |
| if args.validation_prompt is None: | |
| raise ValueError("validation_prompt must be provided and non-empty") | |
| control_dict_root = dict(pipeline_args.get("control_dict", {})) if pipeline_args is not None else {} | |
| spatial_ls = control_dict_root.get("spatial_images", []) or [] | |
| val_imgs = args.validation_images | |
| prompts = args.validation_prompt | |
| if not (len(val_imgs) == len(prompts) == len(spatial_ls)): | |
| raise ValueError( | |
| f"Length mismatch: validation_images={len(val_imgs)}, validation_prompt={len(prompts)}, spatial_images={len(spatial_ls)}" | |
| ) | |
| results = [] | |
| def _resize_to_preferred(img: Image.Image) -> Image.Image: | |
| w, h = img.size | |
| aspect_ratio = w / h if h != 0 else 1.0 | |
| _, target_w, target_h = min( | |
| (abs(aspect_ratio - (pref_w / pref_h)), pref_w, pref_h) | |
| for (pref_h, pref_w) in PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| return img.resize((target_w, target_h), Image.BICUBIC) | |
| # Strict per-case loop | |
| num_cases = len(prompts) | |
| logger.info(f"Paired validation: {num_cases} (image, spatial, prompt) cases") | |
| with autocast_ctx: | |
| for idx in range(num_cases): | |
| resized_img = None | |
| # If validation image path is a non-empty string, load and resize; otherwise, skip passing image | |
| if isinstance(val_imgs[idx], str) and val_imgs[idx] != "": | |
| try: | |
| base_img = Image.open(val_imgs[idx]).convert("RGB") | |
| resized_img = _resize_to_preferred(base_img) | |
| except Exception as e: | |
| raise ValueError(f"Failed to load/resize validation image idx={idx}: {e}") | |
| case_args = dict(pipeline_args) if pipeline_args is not None else {} | |
| case_args.pop("height", None) | |
| case_args.pop("width", None) | |
| if resized_img is not None: | |
| tw, th = resized_img.size | |
| case_args["height"] = th | |
| case_args["width"] = tw | |
| else: | |
| # When no image is provided, default to 1024x1024 | |
| case_args["height"] = 1024 | |
| case_args["width"] = 1024 | |
| # Bind single spatial control image per case; pass it directly (no masking) | |
| case_control = dict(case_args.get("control_dict", {})) | |
| spatial_case = spatial_ls[idx] | |
| # Load spatial image if it's a path; else assume it's already an image | |
| try: | |
| spatial_img = Image.open(spatial_case).convert("RGB") if isinstance(spatial_case, str) else spatial_case | |
| except Exception: | |
| spatial_img = spatial_case | |
| case_control["spatial_images"] = [spatial_img] | |
| case_control["subject_images"] = [] | |
| case_args["control_dict"] = case_control | |
| # Override prompt per case | |
| case_args["prompt"] = prompts[idx] | |
| if resized_img is not None: | |
| img = pipeline(image=resized_img, **case_args, generator=generator).images[0] | |
| else: | |
| img = pipeline(**case_args, generator=generator).images[0] | |
| results.append(img) | |
| # Log results (resize to 1024x1024 for logging only) | |
| resized_for_log = [img.resize((1024, 1024), Image.BICUBIC) for img in results] | |
| for tracker in accelerator.trackers: | |
| phase_name = "test" if is_final_validation else "validation" | |
| if tracker.name == "tensorboard": | |
| np_images = np.stack([np.asarray(img) for img in resized_for_log]) | |
| tracker.writer.add_images(phase_name, np_images, step, dataformats="NHWC") | |
| if tracker.name == "wandb": | |
| tracker.log({ | |
| phase_name: [wandb.Image(image, caption=f"{i}: {prompts[i] if i < len(prompts) else ''}") for i, image in enumerate(resized_for_log)] | |
| }) | |
| del pipeline | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| return results | |
| def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"): | |
| text_encoder_config = transformers.PretrainedConfig.from_pretrained( | |
| pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
| ) | |
| model_class = text_encoder_config.architectures[0] | |
| if model_class == "CLIPTextModel": | |
| from transformers import CLIPTextModel | |
| return CLIPTextModel | |
| elif model_class == "T5EncoderModel": | |
| from transformers import T5EncoderModel | |
| return T5EncoderModel | |
| else: | |
| raise ValueError(f"{model_class} is not supported.") | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Training script for Flux Kontext with EasyControl.") | |
| parser.add_argument("--lora_num", type=int, default=1, help="number of the lora.") | |
| parser.add_argument("--cond_size", type=int, default=512, help="size of the condition data.") | |
| parser.add_argument("--mode", type=str, default=None, help="Controller mode; kept for compatibility.") | |
| parser.add_argument("--train_data_dir", type=str, default="", help="Path to JSONL dataset.") | |
| parser.add_argument("--pretrained_model_name_or_path", type=str, default="", required=False, help="Base model path") | |
| parser.add_argument("--pretrained_lora_path", type=str, default=None, required=False, help="LoRA checkpoint to initialize from") | |
| parser.add_argument("--revision", type=str, default=None, required=False, help="Revision of pretrained model") | |
| parser.add_argument("--variant", type=str, default=None, help="Variant of the model files") | |
| parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") | |
| parser.add_argument("--max_sequence_length", type=int, default=128, help="Max sequence length for T5") | |
| parser.add_argument("--kontext", type=str, default="disable") | |
| parser.add_argument("--validation_prompt", type=str, nargs="+", default=None) | |
| parser.add_argument("--validation_images", type=str, nargs="+", default=None, help="List of valiadation images") | |
| parser.add_argument("--subject_test_images", type=str, nargs="+", default=None, help="List of subject test images") | |
| parser.add_argument("--spatial_test_images", type=str, nargs="+", default=None, help="List of spatial test images") | |
| parser.add_argument("--num_validation_images", type=int, default=4) | |
| parser.add_argument("--validation_steps", type=int, default=20) | |
| parser.add_argument("--ranks", type=int, nargs="+", default=[128], help="LoRA ranks") | |
| parser.add_argument("--network_alphas", type=int, nargs="+", default=[128], help="LoRA network alphas") | |
| parser.add_argument("--output_dir", type=str, default="/tiamat-NAS/zhangyuxuan/projects2/Easy_Control_0120/single_models/subject_model", help="Output directory") | |
| parser.add_argument("--seed", type=int, default=None) | |
| parser.add_argument("--train_batch_size", type=int, default=1) | |
| parser.add_argument("--num_train_epochs", type=int, default=50) | |
| parser.add_argument("--max_train_steps", type=int, default=None) | |
| parser.add_argument("--checkpointing_steps", type=int, default=1000) | |
| parser.add_argument("--checkpoints_total_limit", type=int, default=None) | |
| parser.add_argument("--resume_from_checkpoint", type=str, default=None) | |
| parser.add_argument("--gradient_accumulation_steps", type=int, default=1) | |
| parser.add_argument("--gradient_checkpointing", action="store_true") | |
| parser.add_argument("--learning_rate", type=float, default=1e-4) | |
| parser.add_argument("--guidance_scale", type=float, default=1.0, help="Flux Kontext is guidance distilled") | |
| parser.add_argument("--scale_lr", action="store_true", default=False) | |
| parser.add_argument("--lr_scheduler", type=str, default="constant") | |
| parser.add_argument("--lr_warmup_steps", type=int, default=500) | |
| parser.add_argument("--lr_num_cycles", type=int, default=1) | |
| parser.add_argument("--lr_power", type=float, default=1.0) | |
| parser.add_argument("--dataloader_num_workers", type=int, default=1) | |
| parser.add_argument("--weighting_scheme", type=str, default="none", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"]) | |
| parser.add_argument("--logit_mean", type=float, default=0.0) | |
| parser.add_argument("--logit_std", type=float, default=1.0) | |
| parser.add_argument("--mode_scale", type=float, default=1.29) | |
| parser.add_argument("--optimizer", type=str, default="AdamW") | |
| parser.add_argument("--use_8bit_adam", action="store_true") | |
| parser.add_argument("--adam_beta1", type=float, default=0.9) | |
| parser.add_argument("--adam_beta2", type=float, default=0.999) | |
| parser.add_argument("--prodigy_beta3", type=float, default=None) | |
| parser.add_argument("--prodigy_decouple", type=bool, default=True) | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-04) | |
| parser.add_argument("--adam_weight_decay_text_encoder", type=float, default=1e-03) | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08) | |
| parser.add_argument("--prodigy_use_bias_correction", type=bool, default=True) | |
| parser.add_argument("--prodigy_safeguard_warmup", type=bool, default=True) | |
| parser.add_argument("--max_grad_norm", type=float, default=1.0) | |
| parser.add_argument("--logging_dir", type=str, default="logs") | |
| parser.add_argument("--cache_latents", action="store_true", default=False) | |
| parser.add_argument("--report_to", type=str, default="tensorboard") | |
| parser.add_argument("--mixed_precision", type=str, default="bf16", choices=["no", "fp16", "bf16"]) | |
| parser.add_argument("--upcast_before_saving", action="store_true", default=False) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| return args | |
| def main(args): | |
| if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
| raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.") | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| os.makedirs(args.logging_dir, exist_ok=True) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| kwargs_handlers=[kwargs], | |
| ) | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| if args.report_to == "wandb": | |
| if not is_wandb_available(): | |
| raise ImportError("Install wandb for logging during training.") | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| if accelerator.is_main_process and args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| # Tokenizers | |
| tokenizer_one = transformers.CLIPTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
| ) | |
| tokenizer_two = transformers.T5TokenizerFast.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision | |
| ) | |
| # Text encoders | |
| text_encoder_cls_one = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder") | |
| text_encoder_cls_two = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2") | |
| # Scheduler and models | |
| noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| noise_scheduler_copy = copy.deepcopy(noise_scheduler) | |
| text_encoder_one, text_encoder_two = load_text_encoders(args, text_encoder_cls_one, text_encoder_cls_two) | |
| vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant) | |
| transformer = FluxTransformer2DModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant) | |
| # Train only LoRA adapters | |
| transformer.requires_grad_(True) | |
| vae.requires_grad_(False) | |
| text_encoder_one.requires_grad_(False) | |
| text_encoder_two.requires_grad_(False) | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: | |
| raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.") | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| transformer.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder_one.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder_two.to(accelerator.device, dtype=weight_dtype) | |
| if args.gradient_checkpointing: | |
| transformer.enable_gradient_checkpointing() | |
| # Setup LoRA attention processors | |
| if args.pretrained_lora_path is not None: | |
| lora_path = args.pretrained_lora_path | |
| checkpoint = load_checkpoint(lora_path) | |
| lora_attn_procs = {} | |
| double_blocks_idx = list(range(19)) | |
| single_blocks_idx = list(range(38)) | |
| number = 1 | |
| for name, attn_processor in transformer.attn_processors.items(): | |
| match = re.search(r'\.(\d+)\.', name) | |
| if match: | |
| layer_index = int(match.group(1)) | |
| if name.startswith("transformer_blocks") and layer_index in double_blocks_idx: | |
| lora_state_dicts = {} | |
| for key, value in checkpoint.items(): | |
| if re.search(r'\.(\d+)\.', key): | |
| checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1)) | |
| if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"): | |
| lora_state_dicts[key] = value | |
| lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor( | |
| dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num | |
| ) | |
| for n in range(number): | |
| lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None) | |
| lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None) | |
| lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None) | |
| lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None) | |
| lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None) | |
| lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None) | |
| lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None) | |
| lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None) | |
| elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx: | |
| lora_state_dicts = {} | |
| for key, value in checkpoint.items(): | |
| if re.search(r'\.(\d+)\.', key): | |
| checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1)) | |
| if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"): | |
| lora_state_dicts[key] = value | |
| lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor( | |
| dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num | |
| ) | |
| for n in range(number): | |
| lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None) | |
| lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None) | |
| lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None) | |
| lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None) | |
| lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None) | |
| lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None) | |
| else: | |
| lora_attn_procs[name] = FluxAttnProcessor2_0() | |
| else: | |
| lora_attn_procs = {} | |
| double_blocks_idx = list(range(19)) | |
| single_blocks_idx = list(range(38)) | |
| for name, attn_processor in transformer.attn_processors.items(): | |
| match = re.search(r'\.(\d+)\.', name) | |
| if match: | |
| layer_index = int(match.group(1)) | |
| if name.startswith("transformer_blocks") and layer_index in double_blocks_idx: | |
| lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor( | |
| dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num | |
| ) | |
| elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx: | |
| lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor( | |
| dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num | |
| ) | |
| else: | |
| lora_attn_procs[name] = attn_processor | |
| transformer.set_attn_processor(lora_attn_procs) | |
| transformer.train() | |
| for n, param in transformer.named_parameters(): | |
| if '_lora' not in n: | |
| param.requires_grad = False | |
| print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'M parameters') | |
| def unwrap_model(model): | |
| model = accelerator.unwrap_model(model) | |
| model = model._orig_mod if is_compiled_module(model) else model | |
| return model | |
| if args.resume_from_checkpoint: | |
| path = args.resume_from_checkpoint | |
| global_step = int(path.split("-")[-1]) | |
| initial_global_step = global_step | |
| else: | |
| initial_global_step = 0 | |
| global_step = 0 | |
| first_epoch = 0 | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| if args.mixed_precision == "fp16": | |
| models = [transformer] | |
| cast_training_params(models, dtype=torch.float32) | |
| params_to_optimize = [p for p in transformer.parameters() if p.requires_grad] | |
| transformer_parameters_with_lr = {"params": params_to_optimize, "lr": args.learning_rate} | |
| print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'parameters') | |
| optimizer_class = torch.optim.AdamW | |
| optimizer = optimizer_class( | |
| [transformer_parameters_with_lr], | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| tokenizers = [tokenizer_one, tokenizer_two] | |
| text_encoders = [text_encoder_one, text_encoder_two] | |
| train_dataset = make_train_dataset_inpaint_mask(args, tokenizers, accelerator) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=args.train_batch_size, | |
| shuffle=True, | |
| collate_fn=collate_fn, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| vae_config_shift_factor = vae.config.shift_factor | |
| vae_config_scaling_factor = vae.config.scaling_factor | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.resume_from_checkpoint: | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
| num_training_steps=args.max_train_steps * accelerator.num_processes, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| transformer, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # Sanitize config for TensorBoard hparams (only allow int/float/bool/str/tensor). Others are stringified if possible; otherwise dropped | |
| def _sanitize_hparams(config_dict): | |
| sanitized = {} | |
| for key, value in dict(config_dict).items(): | |
| try: | |
| if value is None: | |
| continue | |
| # numpy scalar types | |
| if isinstance(value, (np.integer,)): | |
| sanitized[key] = int(value) | |
| elif isinstance(value, (np.floating,)): | |
| sanitized[key] = float(value) | |
| elif isinstance(value, (int, float, bool, str)): | |
| sanitized[key] = value | |
| elif isinstance(value, Path): | |
| sanitized[key] = str(value) | |
| elif isinstance(value, (list, tuple)): | |
| # stringify simple sequences; skip if fails | |
| sanitized[key] = str(value) | |
| else: | |
| # best-effort stringify | |
| sanitized[key] = str(value) | |
| except Exception: | |
| # skip unconvertible entries | |
| continue | |
| return sanitized | |
| if accelerator.is_main_process: | |
| tracker_name = "Easy_Control_Kontext" | |
| accelerator.init_trackers(tracker_name, config=_sanitize_hparams(vars(args))) | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): | |
| sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) | |
| schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) | |
| timesteps = timesteps.to(accelerator.device) | |
| step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < n_dim: | |
| sigma = sigma.unsqueeze(-1) | |
| return sigma | |
| # Kontext specifics | |
| vae_scale_factor = 8 # Kontext uses 8x VAE factor; pack/unpack uses additional 2x in methods | |
| # Match pipeline's prepare_latents cond resolution: 2 * (cond_size // (vae_scale_factor * 2)) | |
| height_cond = 2 * (args.cond_size // (vae_scale_factor * 2)) | |
| width_cond = 2 * (args.cond_size // (vae_scale_factor * 2)) | |
| offset = 64 | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| transformer.train() | |
| for step, batch in enumerate(train_dataloader): | |
| models_to_accumulate = [transformer] | |
| with accelerator.accumulate(models_to_accumulate): | |
| tokens = [batch["text_ids_1"], batch["text_ids_2"]] | |
| prompt_embeds, pooled_prompt_embeds, text_ids = encode_token_ids(text_encoders, tokens, accelerator) | |
| prompt_embeds = prompt_embeds.to(dtype=vae.dtype, device=accelerator.device) | |
| pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=vae.dtype, device=accelerator.device) | |
| text_ids = text_ids.to(dtype=vae.dtype, device=accelerator.device) | |
| pixel_values = batch["pixel_values"].to(dtype=vae.dtype) | |
| height_ = 2 * (int(pixel_values.shape[-2]) // (vae_scale_factor * 2)) | |
| width_ = 2 * (int(pixel_values.shape[-1]) // (vae_scale_factor * 2)) | |
| model_input = vae.encode(pixel_values).latent_dist.sample() | |
| model_input = (model_input - vae_config_shift_factor) * vae_config_scaling_factor | |
| model_input = model_input.to(dtype=weight_dtype) | |
| latent_image_ids, cond_latent_image_ids = resize_position_encoding( | |
| model_input.shape[0], height_, width_, height_cond, width_cond, accelerator.device, weight_dtype | |
| ) | |
| noise = torch.randn_like(model_input) | |
| bsz = model_input.shape[0] | |
| u = compute_density_for_timestep_sampling( | |
| weighting_scheme=args.weighting_scheme, | |
| batch_size=bsz, | |
| logit_mean=args.logit_mean, | |
| logit_std=args.logit_std, | |
| mode_scale=args.mode_scale, | |
| ) | |
| indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() | |
| timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device) | |
| sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype) | |
| noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise | |
| packed_noisy_model_input = FluxKontextControlPipeline._pack_latents( | |
| noisy_model_input, | |
| batch_size=model_input.shape[0], | |
| num_channels_latents=model_input.shape[1], | |
| height=model_input.shape[2], | |
| width=model_input.shape[3], | |
| ) | |
| latent_image_ids_to_concat = [latent_image_ids] | |
| packed_cond_model_input_to_concat = [] | |
| if args.kontext == "enable": | |
| source_pixel_values = batch["source_pixel_values"].to(dtype=vae.dtype) | |
| source_image_latents = vae.encode(source_pixel_values).latent_dist.sample() | |
| source_image_latents = (source_image_latents - vae_config_shift_factor) * vae_config_scaling_factor | |
| image_latent_h, image_latent_w = source_image_latents.shape[2:] | |
| packed_image_latents = FluxKontextControlPipeline._pack_latents( | |
| source_image_latents, | |
| batch_size=source_image_latents.shape[0], | |
| num_channels_latents=source_image_latents.shape[1], | |
| height=image_latent_h, | |
| width=image_latent_w, | |
| ) | |
| source_image_ids = FluxKontextControlPipeline._prepare_latent_image_ids( | |
| batch_size=source_image_latents.shape[0], | |
| height=image_latent_h // 2, | |
| width=image_latent_w // 2, | |
| device=accelerator.device, | |
| dtype=weight_dtype, | |
| ) | |
| source_image_ids[..., 0] = 1 # Mark as condition | |
| latent_image_ids_to_concat.append(source_image_ids) | |
| subject_pixel_values = batch.get("subject_pixel_values") | |
| if subject_pixel_values is not None: | |
| subject_pixel_values = subject_pixel_values.to(dtype=vae.dtype) | |
| subject_input = vae.encode(subject_pixel_values).latent_dist.sample() | |
| subject_input = (subject_input - vae_config_shift_factor) * vae_config_scaling_factor | |
| subject_input = subject_input.to(dtype=weight_dtype) | |
| sub_number = subject_pixel_values.shape[-2] // args.cond_size | |
| latent_subject_ids = prepare_latent_subject_ids(height_cond // 2, width_cond // 2, accelerator.device, weight_dtype) | |
| latent_subject_ids[..., 0] = 2 | |
| latent_subject_ids[:, 1] += offset | |
| sub_latent_image_ids = torch.cat([latent_subject_ids for _ in range(sub_number)], dim=0) | |
| latent_image_ids_to_concat.append(sub_latent_image_ids) | |
| packed_subject_model_input = FluxKontextControlPipeline._pack_latents( | |
| subject_input, | |
| batch_size=subject_input.shape[0], | |
| num_channels_latents=subject_input.shape[1], | |
| height=subject_input.shape[2], | |
| width=subject_input.shape[3], | |
| ) | |
| packed_cond_model_input_to_concat.append(packed_subject_model_input) | |
| cond_pixel_values = batch.get("cond_pixel_values") | |
| if cond_pixel_values is not None: | |
| cond_pixel_values = cond_pixel_values.to(dtype=vae.dtype) | |
| cond_input = vae.encode(cond_pixel_values).latent_dist.sample() | |
| cond_input = (cond_input - vae_config_shift_factor) * vae_config_scaling_factor | |
| cond_input = cond_input.to(dtype=weight_dtype) | |
| cond_number = cond_pixel_values.shape[-2] // args.cond_size | |
| cond_latent_image_ids[..., 0] = 2 | |
| cond_latent_image_ids_rep = torch.cat([cond_latent_image_ids for _ in range(cond_number)], dim=0) | |
| latent_image_ids_to_concat.append(cond_latent_image_ids_rep) | |
| packed_cond_model_input = FluxKontextControlPipeline._pack_latents( | |
| cond_input, | |
| batch_size=cond_input.shape[0], | |
| num_channels_latents=cond_input.shape[1], | |
| height=cond_input.shape[2], | |
| width=cond_input.shape[3], | |
| ) | |
| packed_cond_model_input_to_concat.append(packed_cond_model_input) | |
| latent_image_ids = torch.cat(latent_image_ids_to_concat, dim=0) | |
| cond_packed_noisy_model_input = torch.cat(packed_cond_model_input_to_concat, dim=1) | |
| if accelerator.unwrap_model(transformer).config.guidance_embeds: | |
| guidance = torch.tensor([args.guidance_scale], device=accelerator.device) | |
| guidance = guidance.expand(model_input.shape[0]) | |
| else: | |
| guidance = None | |
| latent_model_input=packed_noisy_model_input | |
| if args.kontext == "enable": | |
| latent_model_input = torch.cat([latent_model_input, packed_image_latents], dim=1) | |
| model_pred = transformer( | |
| hidden_states=latent_model_input, | |
| cond_hidden_states=cond_packed_noisy_model_input, | |
| timestep=timesteps / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| return_dict=False, | |
| )[0] | |
| model_pred = model_pred[:, : packed_noisy_model_input.size(1)] | |
| model_pred = FluxKontextControlPipeline._unpack_latents( | |
| model_pred, | |
| height=int(pixel_values.shape[-2]), | |
| width=int(pixel_values.shape[-1]), | |
| vae_scale_factor=vae_scale_factor, | |
| ) | |
| weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas) | |
| target = noise - model_input | |
| loss = torch.mean((weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1) | |
| loss = loss.mean() | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| params_to_clip = (transformer.parameters()) | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info(f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints") | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| os.makedirs(save_path, exist_ok=True) | |
| unwrapped_model_state = accelerator.unwrap_model(transformer).state_dict() | |
| lora_state_dict = {k: unwrapped_model_state[k] for k in unwrapped_model_state.keys() if '_lora' in k} | |
| save_file(lora_state_dict, os.path.join(save_path, "lora.safetensors")) | |
| logger.info(f"Saved state to {save_path}") | |
| logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if accelerator.is_main_process: | |
| if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
| pipeline = FluxKontextControlPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| vae=vae, | |
| text_encoder=accelerator.unwrap_model(text_encoder_one), | |
| text_encoder_2=accelerator.unwrap_model(text_encoder_two), | |
| transformer=accelerator.unwrap_model(transformer), | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| if args.subject_test_images is not None and len(args.subject_test_images) != 0 and args.subject_test_images != ['None']: | |
| subject_paths = args.subject_test_images | |
| subject_ls = [Image.open(image_path).convert("RGB") for image_path in subject_paths] | |
| else: | |
| subject_ls = [] | |
| if args.spatial_test_images is not None and len(args.spatial_test_images) != 0 and args.spatial_test_images != ['None']: | |
| spatial_paths = args.spatial_test_images | |
| spatial_ls = [Image.open(image_path).convert("RGB") for image_path in spatial_paths] | |
| else: | |
| spatial_ls = [] | |
| pipeline_args = { | |
| "prompt": args.validation_prompt, | |
| "cond_size": args.cond_size, | |
| "guidance_scale": 3.5, | |
| "num_inference_steps": 20, | |
| "max_sequence_length": 128, | |
| "control_dict": {"spatial_images": spatial_ls, "subject_images": subject_ls}, | |
| } | |
| images = log_validation( | |
| pipeline=pipeline, | |
| args=args, | |
| accelerator=accelerator, | |
| pipeline_args=pipeline_args, | |
| step=global_step, | |
| torch_dtype=weight_dtype, | |
| ) | |
| save_path = os.path.join(args.output_dir, "validation") | |
| os.makedirs(save_path, exist_ok=True) | |
| save_folder = os.path.join(save_path, f"checkpoint-{global_step}") | |
| os.makedirs(save_folder, exist_ok=True) | |
| for idx, img in enumerate(images): | |
| img.save(os.path.join(save_folder, f"{idx}.jpg")) | |
| del pipeline | |
| accelerator.wait_for_everyone() | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |