MagicQuillV2 / train /train_kontext_lora.py
LiuZichen's picture
update
f460ce6
import argparse
import copy
import logging
import math
import os
import shutil
from contextlib import nullcontext
from pathlib import Path
import re
import time
from safetensors.torch import save_file
from PIL import Image
import numpy as np
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
import diffusers
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
)
from diffusers.utils.torch_utils import is_compiled_module
from diffusers.utils import (
check_min_version,
is_wandb_available,
)
from src.prompt_helper import *
from src.lora_helper import *
from src.jsonl_datasets_kontext_interactive_lora import make_interactive_dataset_subjects, make_placement_dataset_subjects, make_pexels_dataset_subjects, make_mixed_dataset, collate_fn
from diffusers import FluxKontextPipeline
from diffusers.models import FluxTransformer2DModel
from tqdm.auto import tqdm
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from diffusers.utils import convert_state_dict_to_diffusers
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
logger = get_logger(__name__)
PREFERRED_KONTEXT_RESOLUTIONS = [
(672, 1568),
(688, 1504),
(720, 1456),
(752, 1392),
(832, 1248),
(880, 1184),
(944, 1104),
(1024, 1024),
(1104, 944),
(1184, 880),
(1248, 832),
(1392, 752),
(1456, 720),
(1504, 688),
(1568, 672),
]
def log_validation(
pipeline,
args,
accelerator,
pipeline_args,
step,
torch_dtype,
is_final_validation=False,
):
logger.info(
f"Running validation... Paired evaluation for image and prompt."
)
pipeline = pipeline.to(device=accelerator.device, dtype=torch_dtype)
pipeline.set_progress_bar_config(disable=True)
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
# Match compute dtype for validation to avoid dtype mismatches (e.g., VAE bf16 vs float latents)
if torch_dtype in (torch.float16, torch.bfloat16):
device_type = 'cuda' if torch.cuda.is_available() else 'cpu'
autocast_ctx = torch.autocast(device_type=device_type, dtype=torch_dtype)
else:
autocast_ctx = nullcontext()
# Build per-case evaluation
if args.validation_images is None or args.validation_images == ['None']:
raise ValueError("validation_images must be provided and non-empty")
if args.validation_prompt is None:
raise ValueError("validation_prompt must be provided and non-empty")
val_imgs = args.validation_images
prompts = args.validation_prompt
# Prepend instruction to each prompt (same as dataset/test requirement)
instruction = "Fill in the white region naturally and adapt the foreground into the background. Fix the perspective of the foreground object if necessary."
try:
prompts = [f"{instruction} {p}".strip() if isinstance(p, str) and len(p.strip()) > 0 else instruction for p in prompts]
except Exception:
# Fallback: keep original prompts if unexpected
pass
if not (len(val_imgs) == len(prompts)):
raise ValueError(
f"Length mismatch: validation_images={len(val_imgs)}, validation_prompt={len(prompts)}"
)
results = []
def _resize_to_preferred(img: Image.Image) -> Image.Image:
w, h = img.size
aspect_ratio = w / h if h != 0 else 1.0
_, target_w, target_h = min(
(abs(aspect_ratio - (pref_w / pref_h)), pref_w, pref_h)
for (pref_h, pref_w) in PREFERRED_KONTEXT_RESOLUTIONS
)
return img.resize((target_w, target_h), Image.BICUBIC)
# Distributed per-rank assignment: each process handles its own slice of cases
num_cases = len(prompts)
logger.info(f"Paired validation (distributed): {num_cases} cases across {accelerator.num_processes} ranks")
# Indices assigned to this rank
rank = accelerator.process_index
world_size = accelerator.num_processes
local_indices = list(range(rank, num_cases, world_size))
local_images = []
with autocast_ctx:
for idx in local_indices:
try:
base_img = Image.open(val_imgs[idx]).convert("RGB")
resized_img = _resize_to_preferred(base_img)
except Exception as e:
raise ValueError(f"Failed to load/resize validation image idx={idx}: {e}")
case_args = dict(pipeline_args) if pipeline_args is not None else {}
case_args.pop("height", None)
case_args.pop("width", None)
if resized_img is not None:
tw, th = resized_img.size
case_args["height"] = th
case_args["width"] = tw
case_args["prompt"] = prompts[idx]
img = pipeline(image=resized_img, **case_args, generator=generator).images[0]
local_images.append(img)
# Gather all images per rank (pad to equal count) to main process
fixed_size = (1024, 1024)
max_local = int(math.ceil(num_cases / world_size)) if world_size > 0 else len(local_images)
# Build per-rank batch tensors
imgs_rank = []
idx_rank = []
has_rank = []
for j in range(max_local):
if j < len(local_images):
resized = local_images[j].resize(fixed_size, Image.BICUBIC)
img_np = np.asarray(resized).astype(np.uint8)
imgs_rank.append(torch.from_numpy(img_np))
idx_rank.append(local_indices[j])
has_rank.append(1)
else:
imgs_rank.append(torch.from_numpy(np.zeros((fixed_size[1], fixed_size[0], 3), dtype=np.uint8)))
idx_rank.append(-1)
has_rank.append(0)
imgs_rank_tensor = torch.stack([t.to(device=accelerator.device) for t in imgs_rank], dim=0) # [max_local, H, W, C]
idx_rank_tensor = torch.tensor(idx_rank, device=accelerator.device, dtype=torch.long) # [max_local]
has_rank_tensor = torch.tensor(has_rank, device=accelerator.device, dtype=torch.int) # [max_local]
gathered_has = accelerator.gather(has_rank_tensor) # [world * max_local]
gathered_idx = accelerator.gather(idx_rank_tensor) # [world * max_local]
gathered_imgs = accelerator.gather(imgs_rank_tensor) # [world * max_local, H, W, C]
if accelerator.is_main_process:
world = int(world_size)
slots = int(max_local)
try:
gathered_has = gathered_has.view(world, slots)
gathered_idx = gathered_idx.view(world, slots)
gathered_imgs = gathered_imgs.view(world, slots, fixed_size[1], fixed_size[0], 3)
except Exception:
# Fallback: treat as flat if reshape fails
gathered_has = gathered_has.view(-1, 1)
gathered_idx = gathered_idx.view(-1, 1)
gathered_imgs = gathered_imgs.view(-1, 1, fixed_size[1], fixed_size[0], 3)
world = int(gathered_has.shape[0])
slots = 1
for i in range(world):
for j in range(slots):
if int(gathered_has[i, j].item()) == 1:
idx = int(gathered_idx[i, j].item())
arr = gathered_imgs[i, j].cpu().numpy()
pil_img = Image.fromarray(arr.astype(np.uint8))
# Resize back to original validation image size
try:
orig = Image.open(val_imgs[idx]).convert("RGB")
pil_img = pil_img.resize(orig.size, Image.BICUBIC)
except Exception:
pass
results.append(pil_img)
# Log results (resize to 1024x1024 for saving or external trackers). Skip TensorBoard per request.
resized_for_log = [img.resize((1024, 1024), Image.BICUBIC) for img in results]
for tracker in accelerator.trackers:
phase_name = "test" if is_final_validation else "validation"
if tracker.name == "tensorboard":
continue
if tracker.name == "wandb":
tracker.log({
phase_name: [wandb.Image(image, caption=f"{i}: {prompts[i] if i < len(prompts) else ''}") for i, image in enumerate(resized_for_log)]
})
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
return results
def save_with_retry(img: Image.Image, path: str, max_retries: int = 3) -> bool:
"""Save PIL image with simple retry and exponential backoff to mitigate transient I/O errors."""
last_err = None
for attempt in range(max_retries):
try:
os.makedirs(os.path.dirname(path), exist_ok=True)
img.save(path)
return True
except OSError as e:
last_err = e
# Exponential backoff: 1.0, 1.5, 2.25 seconds ...
time.sleep(1.5 ** attempt)
logger.warning(f"Failed to save {path} after {max_retries} retries: {last_err}")
return False
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"):
text_encoder_config = transformers.PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Training script for Flux Kontext with EasyControl.")
parser.add_argument("--mode", type=str, default=None, help="Controller mode; kept for compatibility.")
# Dataset arguments
parser.add_argument("--dataset_mode", type=str, default="mixed", choices=["interactive", "placement", "pexels", "mixed"],
help="Dataset mode: interactive, placement, pexels, or mixed")
parser.add_argument("--train_data_jsonl", type=str, default="/robby/share/Editing/lzc/HOI_v1/final_metadata.jsonl",
help="Path to interactive dataset JSONL")
parser.add_argument("--placement_data_jsonl", type=str, default="/robby/share/Editing/lzc/subject_placement/metadata_relight.jsonl",
help="Path to placement dataset JSONL")
parser.add_argument("--pexels_data_jsonl", type=str, default=None,
help="Path to pexels dataset JSONL")
parser.add_argument("--interactive_base_dir", type=str, default="/robby/share/Editing/lzc/HOI_v1",
help="Base directory for interactive dataset")
parser.add_argument("--placement_base_dir", type=str, default="/robby/share/Editing/lzc/subject_placement",
help="Base directory for placement dataset")
parser.add_argument("--pexels_base_dir", type=str, default=None,
help="Base directory for pexels dataset")
parser.add_argument("--pexels_relight_base_dir", type=str, default=None,
help="Base directory for pexels relighted images")
parser.add_argument("--seg_base_dir", type=str, default=None,
help="Directory containing segmentation maps for pexels dataset")
parser.add_argument("--interactive_weight", type=float, default=1.0,
help="Sampling weight for interactive dataset (default: 1.0)")
parser.add_argument("--placement_weight", type=float, default=1.0,
help="Sampling weight for placement dataset (default: 1.0)")
parser.add_argument("--pexels_weight", type=float, default=0.1,
help="Sampling weight for pexels dataset (default: 1.0)")
parser.add_argument("--pretrained_model_name_or_path", type=str, default="", required=False, help="Base model path")
parser.add_argument("--pretrained_lora_path", type=str, default=None, required=False, help="LoRA checkpoint to initialize from")
parser.add_argument("--revision", type=str, default=None, required=False, help="Revision of pretrained model")
parser.add_argument("--variant", type=str, default=None, help="Variant of the model files")
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
parser.add_argument("--max_sequence_length", type=int, default=128, help="Max sequence length for T5")
parser.add_argument("--kontext", type=str, default="enable")
parser.add_argument("--validation_prompt", type=str, nargs="+", default=None)
parser.add_argument("--validation_images", type=str, nargs="+", default=None, help="List of valiadation images")
parser.add_argument("--num_validation_images", type=int, default=4)
parser.add_argument("--validation_steps", type=int, default=20)
parser.add_argument("--ranks", type=int, nargs="+", default=[32], help="LoRA ranks")
parser.add_argument("--output_dir", type=str, default="", help="Output directory")
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--train_batch_size", type=int, default=1)
parser.add_argument("--num_train_epochs", type=int, default=50)
parser.add_argument("--max_train_steps", type=int, default=None)
parser.add_argument("--checkpointing_steps", type=int, default=1000)
parser.add_argument("--checkpoints_total_limit", type=int, default=None)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--gradient_checkpointing", action="store_true")
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--guidance_scale", type=float, default=1.0, help="Flux Kontext is guidance distilled")
parser.add_argument("--scale_lr", action="store_true", default=False)
parser.add_argument("--lr_scheduler", type=str, default="constant")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--lr_num_cycles", type=int, default=1)
parser.add_argument("--lr_power", type=float, default=1.0)
parser.add_argument("--dataloader_num_workers", type=int, default=8)
parser.add_argument("--weighting_scheme", type=str, default="none", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"])
parser.add_argument("--logit_mean", type=float, default=0.0)
parser.add_argument("--logit_std", type=float, default=1.0)
parser.add_argument("--mode_scale", type=float, default=1.29)
parser.add_argument("--optimizer", type=str, default="AdamW")
parser.add_argument("--use_8bit_adam", action="store_true")
parser.add_argument("--adam_beta1", type=float, default=0.9)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--prodigy_beta3", type=float, default=None)
parser.add_argument("--prodigy_decouple", type=bool, default=True)
parser.add_argument("--adam_weight_decay", type=float, default=1e-04)
parser.add_argument("--adam_weight_decay_text_encoder", type=float, default=1e-03)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--prodigy_use_bias_correction", type=bool, default=True)
parser.add_argument("--prodigy_safeguard_warmup", type=bool, default=True)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument("--cache_latents", action="store_true", default=False)
parser.add_argument("--report_to", type=str, default="tensorboard")
parser.add_argument("--mixed_precision", type=str, default="bf16", choices=["no", "fp16", "bf16"])
parser.add_argument("--upcast_before_saving", action="store_true", default=False)
# Blending options for dataset pixel_values
parser.add_argument("--blend_pixel_values", action="store_true", help="Blend target/source into pixel_values using mask")
parser.add_argument("--blend_kernel", type=int, default=21, help="Gaussian blur kernel size (must be odd)")
parser.add_argument("--blend_sigma", type=float, default=10.0, help="Gaussian blur sigma")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
def main(args):
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.")
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.logging_dir, exist_ok=True)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
if torch.backends.mps.is_available():
accelerator.native_amp = False
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Install wandb for logging during training.")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process and args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Tokenizers
tokenizer_one = transformers.CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
tokenizer_two = transformers.T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision
)
# Text encoders
text_encoder_cls_one = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder")
text_encoder_cls_two = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2")
# Scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
text_encoder_one, text_encoder_two = load_text_encoders(args, text_encoder_cls_one, text_encoder_cls_two)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant)
transformer = FluxTransformer2DModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant)
# Train only LoRA adapters: freeze base transformer/text encoders/vae
transformer.requires_grad_(False)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.")
vae.to(accelerator.device, dtype=weight_dtype)
transformer.to(accelerator.device, dtype=weight_dtype)
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# Setup standard PEFT LoRA on FluxTransformer2DModel
# target_modules = [
# "attn.to_k",
# "attn.to_q",
# "attn.to_v",
# "attn.to_out.0",
# "attn.add_k_proj",
# "attn.add_q_proj",
# "attn.add_v_proj",
# "attn.to_add_out",
# "ff.net.0.proj",
# "ff.net.2",
# "ff_context.net.0.proj",
# "ff_context.net.2",
# ]
target_modules = [
"attn.to_k",
"attn.to_q",
"attn.to_v",
"attn.to_out.0",
"attn.add_k_proj",
"attn.add_q_proj",
"attn.add_v_proj",
"attn.to_add_out",
"ff.net.0.proj",
"ff.net.2",
"ff_context.net.0.proj",
"ff_context.net.2",
# ===========================================================
# 【补全部分 1】: 单流模块 (single_transformer_blocks) 的专属层
# ===========================================================
# 说明:单流块中的注意力层 (to_q, to_k, to_v) 已被上面的通用名称覆盖。
# 这里补充的是它们特有的 MLP 和输出层。
"proj_mlp",
"proj_out", # 这个名称也会匹配单流块各自的输出层和模型总输出层
# ===========================================================
# 【补全部分 2】: 所有的归一化 (Norm) 层
# ===========================================================
# 说明:这些层负责调整特征分布,对风格学习很重要。
# 使用 "linear" 可以一次性匹配所有以 ".linear" 结尾的Norm层。
"linear", # 匹配 norm1.linear, norm1_context.linear, norm.linear, norm_out.linear
]
lora_rank = int(args.ranks[0]) if isinstance(args.ranks, list) and len(args.ranks) > 0 else 256
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_rank,
init_lora_weights="gaussian",
target_modules=target_modules,
)
transformer.add_adapter(lora_config)
transformer.train()
print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'M parameters')
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
if args.resume_from_checkpoint:
path = args.resume_from_checkpoint
global_step = int(path.split("-")[-1])
initial_global_step = global_step
else:
initial_global_step = 0
global_step = 0
first_epoch = 0
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
if args.mixed_precision == "fp16":
models = [transformer]
cast_training_params(models, dtype=torch.float32)
params_to_optimize = [p for p in transformer.parameters() if p.requires_grad]
transformer_parameters_with_lr = {"params": params_to_optimize, "lr": args.learning_rate}
# print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'parameters')
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(
[transformer_parameters_with_lr],
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]
# Create dataset based on mode
if args.dataset_mode == "mixed":
# Mixed mode: combine all available datasets
train_dataset = make_mixed_dataset(
args,
tokenizers,
interactive_jsonl_path=args.train_data_jsonl,
placement_jsonl_path=args.placement_data_jsonl,
pexels_jsonl_path=args.pexels_data_jsonl,
interactive_base_dir=args.interactive_base_dir,
placement_base_dir=args.placement_base_dir,
pexels_base_dir=args.pexels_base_dir,
interactive_weight=args.interactive_weight,
placement_weight=args.placement_weight,
pexels_weight=args.pexels_weight,
accelerator=accelerator
)
weights_str = []
if args.train_data_jsonl:
weights_str.append(f"Interactive: {args.interactive_weight:.2f}")
if args.placement_data_jsonl:
weights_str.append(f"Placement: {args.placement_weight:.2f}")
if args.pexels_data_jsonl:
weights_str.append(f"Pexels: {args.pexels_weight:.2f}")
logger.info(f"Mixed dataset created with weights - {', '.join(weights_str)}")
elif args.dataset_mode == "pexels":
if not args.pexels_data_jsonl:
raise ValueError("pexels_data_jsonl must be provided for pexels mode")
train_dataset = make_pexels_dataset_subjects(args, tokenizers, accelerator)
elif args.dataset_mode == "placement":
if not args.placement_data_jsonl:
raise ValueError("placement_data_jsonl must be provided for placement mode")
train_dataset = make_placement_dataset_subjects(args, tokenizers, accelerator)
else: # interactive mode
train_dataset = make_interactive_dataset_subjects(args, tokenizers, accelerator)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
)
vae_config_shift_factor = vae.config.shift_factor
vae_config_scaling_factor = vae.config.scaling_factor
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.resume_from_checkpoint:
first_epoch = global_step // num_update_steps_per_epoch
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Sanitize config for TensorBoard hparams (only allow int/float/bool/str/tensor). Others are stringified if possible; otherwise dropped
def _sanitize_hparams(config_dict):
sanitized = {}
for key, value in dict(config_dict).items():
try:
if value is None:
continue
# numpy scalar types
if isinstance(value, (np.integer,)):
sanitized[key] = int(value)
elif isinstance(value, (np.floating,)):
sanitized[key] = float(value)
elif isinstance(value, (int, float, bool, str)):
sanitized[key] = value
elif isinstance(value, Path):
sanitized[key] = str(value)
elif isinstance(value, (list, tuple)):
# stringify simple sequences; skip if fails
sanitized[key] = str(value)
else:
# best-effort stringify
sanitized[key] = str(value)
except Exception:
# skip unconvertible entries
continue
return sanitized
if accelerator.is_main_process:
tracker_name = "Easy_Control_Kontext"
accelerator.init_trackers(tracker_name, config=_sanitize_hparams(vars(args)))
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
disable=not accelerator.is_local_main_process,
)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# Kontext specifics
vae_scale_factor = 8 # Kontext uses 8x VAE factor; pack/unpack uses additional 2x in methods
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
for step, batch in enumerate(train_dataloader):
models_to_accumulate = [transformer]
with accelerator.accumulate(models_to_accumulate):
tokens = [batch["text_ids_1"], batch["text_ids_2"]]
prompt_embeds, pooled_prompt_embeds, text_ids = encode_token_ids(text_encoders, tokens, accelerator)
prompt_embeds = prompt_embeds.to(dtype=vae.dtype, device=accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=vae.dtype, device=accelerator.device)
text_ids = text_ids.to(dtype=vae.dtype, device=accelerator.device)
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
height_ = 2 * (int(pixel_values.shape[-2]) // (vae_scale_factor * 2))
width_ = 2 * (int(pixel_values.shape[-1]) // (vae_scale_factor * 2))
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = (model_input - vae_config_shift_factor) * vae_config_scaling_factor
model_input = model_input.to(dtype=weight_dtype)
# Prepare latent ids for transformer (positional encodings)
latent_image_ids = FluxKontextPipeline._prepare_latent_image_ids(
batch_size=model_input.shape[0],
height=model_input.shape[2] // 2,
width=model_input.shape[3] // 2,
device=accelerator.device,
dtype=weight_dtype,
)
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device)
sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype)
noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise
packed_noisy_model_input = FluxKontextPipeline._pack_latents(
noisy_model_input,
batch_size=model_input.shape[0],
num_channels_latents=model_input.shape[1],
height=model_input.shape[2],
width=model_input.shape[3],
)
if accelerator.unwrap_model(transformer).config.guidance_embeds:
guidance = torch.tensor([args.guidance_scale], device=accelerator.device)
guidance = guidance.expand(model_input.shape[0])
else:
guidance = None
# If kontext editing is enabled, append source image latents to the sequence
latent_model_input = packed_noisy_model_input
if args.kontext == "enable":
source_pixel_values = batch["source_pixel_values"].to(dtype=vae.dtype)
source_image_latents = vae.encode(source_pixel_values).latent_dist.sample()
source_image_latents = (source_image_latents - vae_config_shift_factor) * vae_config_scaling_factor
image_latent_h, image_latent_w = source_image_latents.shape[2:]
packed_image_latents = FluxKontextPipeline._pack_latents(
source_image_latents,
batch_size=source_image_latents.shape[0],
num_channels_latents=source_image_latents.shape[1],
height=image_latent_h,
width=image_latent_w,
)
source_image_ids = FluxKontextPipeline._prepare_latent_image_ids(
batch_size=source_image_latents.shape[0],
height=image_latent_h // 2,
width=image_latent_w // 2,
device=accelerator.device,
dtype=weight_dtype,
)
source_image_ids[..., 0] = 1
latent_model_input = torch.cat([latent_model_input, packed_image_latents], dim=1)
latent_image_ids = torch.cat([latent_image_ids, source_image_ids], dim=0)
# Forward transformer with packed latents and ids
model_pred = transformer(
hidden_states=latent_model_input,
timestep=timesteps / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
return_dict=False,
)[0]
model_pred = model_pred[:, : packed_noisy_model_input.size(1)]
model_pred = FluxKontextPipeline._unpack_latents(
model_pred,
height=int(pixel_values.shape[-2]),
width=int(pixel_values.shape[-1]),
vae_scale_factor=vae_scale_factor,
)
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
target = noise - model_input
loss = torch.mean((weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1)
loss = loss.mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (transformer.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints")
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
os.makedirs(save_path, exist_ok=True)
unwrapped = accelerator.unwrap_model(transformer)
peft_state = get_peft_model_state_dict(unwrapped)
# Convert PEFT state dict to diffusers LoRA format for transformer
diffusers_lora = convert_state_dict_to_diffusers(peft_state)
save_file(diffusers_lora, os.path.join(save_path, "pytorch_lora_weights.safetensors"))
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
# Create pipeline on every rank to run validation in parallel
pipeline = FluxKontextPipeline.from_pretrained(
args.pretrained_model_name_or_path,
vae=vae,
text_encoder=accelerator.unwrap_model(text_encoder_one),
text_encoder_2=accelerator.unwrap_model(text_encoder_two),
transformer=accelerator.unwrap_model(transformer),
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
pipeline_args = {
"prompt": args.validation_prompt,
"guidance_scale": 3.5,
"num_inference_steps": 20,
"max_sequence_length": 128,
}
images = log_validation(
pipeline=pipeline,
args=args,
accelerator=accelerator,
pipeline_args=pipeline_args,
step=global_step,
torch_dtype=weight_dtype,
)
# Only main process saves/logs
if accelerator.is_main_process:
save_path = os.path.join(args.output_dir, "validation")
os.makedirs(save_path, exist_ok=True)
save_folder = os.path.join(save_path, f"checkpoint-{global_step}")
os.makedirs(save_folder, exist_ok=True)
for idx, img in enumerate(images):
out_path = os.path.join(save_folder, f"{idx}.jpg")
save_with_retry(img, out_path)
del pipeline
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)