.gitattributes CHANGED
@@ -32,3 +32,16 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ fonts/arabic.ttf filter=lfs diff=lfs merge=lfs -text
36
+ fonts/chinese_cht.ttf filter=lfs diff=lfs merge=lfs -text
37
+ fonts/french.ttf filter=lfs diff=lfs merge=lfs -text
38
+ fonts/german.ttf filter=lfs diff=lfs merge=lfs -text
39
+ fonts/hindi.ttf filter=lfs diff=lfs merge=lfs -text
40
+ fonts/japan.ttc filter=lfs diff=lfs merge=lfs -text
41
+ fonts/kannada.ttf filter=lfs diff=lfs merge=lfs -text
42
+ fonts/korean.ttf filter=lfs diff=lfs merge=lfs -text
43
+ fonts/nepali.ttf filter=lfs diff=lfs merge=lfs -text
44
+ fonts/simfang.ttf filter=lfs diff=lfs merge=lfs -text
45
+ fonts/spanish.ttf filter=lfs diff=lfs merge=lfs -text
46
+ fonts/tamil.ttf filter=lfs diff=lfs merge=lfs -text
47
+ fonts/telugu.ttf filter=lfs diff=lfs merge=lfs -text
Home.py CHANGED
@@ -1,17 +1,33 @@
1
- import streamlit as st
2
- from multipage import MultiPage
3
- from app_pages import home, about, ocr_comparator
4
-
5
- app = MultiPage()
6
- st.set_page_config(
7
- page_title='OCR Comparator', layout ="wide",
8
- initial_sidebar_state="expanded",
9
- )
10
-
11
- # Add all your application here
12
- app.add_page("Home", "house", home.app)
13
- app.add_page("About", "info-circle", about.app)
14
- app.add_page("App", "cast", ocr_comparator.app)
15
-
16
- # The main app
17
- app.run()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ #from multipage import MultiPage
3
+ #from app_pages import home, about, ocr_comparator, enhance
4
+ #from mmocr.utils.ocr import MMOCR
5
+ import os
6
+ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
7
+
8
+ st.set_page_config(
9
+ page_title='OCR Comparator', layout ="wide",
10
+ initial_sidebar_state="expanded",
11
+ )
12
+
13
+ # https://fonts.google.com/icons?icon.set=Material+Symbols&icon.style=Rounded&selected=Material+Symbols+Rounded:info:FILL@0;wght@400;GRAD@0;opsz@24&icon.query=info&icon.size=24&icon.color=%235f6368
14
+
15
+ st.markdown("""
16
+ <style>
17
+ .block-container {
18
+ padding-top: 1rem;
19
+ padding-bottom: 1rem;
20
+ padding-left: 1rem;
21
+ padding-right: 2rem;
22
+ }
23
+ </style>
24
+ """, unsafe_allow_html=True)
25
+
26
+ page1 = st.Page("home_page.py", title="Home", icon=":material/home:")
27
+ page2 = st.Page("about.py", title="About", icon=":material/info:")
28
+ page3 = st.Page("enhance.py", title="Image processing", icon=":material/edit_square:")
29
+ page4 = st.Page("ocr_comparator.py", title="OCR Comparator", icon=":material/smart_display:")
30
+
31
+ pg = st.navigation([page1, page2, page3, page4])
32
+
33
+ pg.run()
about.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
4
+
5
+ st.markdown("""
6
+ <style>
7
+ .block-container {
8
+ padding-top: 1rem;
9
+ padding-bottom: 1rem;
10
+ padding-left: 1rem;
11
+ padding-right: 2rem;
12
+ }
13
+ </style>
14
+ """, unsafe_allow_html=True)
15
+
16
+ st.markdown('''#### :orange[OCR solutions comparator]''')
17
+ st.write("")
18
+ lib = "This application's tab allows you to compare, from a given image, the results of different solutions: \n*EasyOcr, PaddleOCR, MMOCR, Tesseract*"
19
+ st.markdown(lib)
20
+
21
+ with st.expander("See details:"):
22
+ st.markdown(''' The 1st step is to choose the language for the text recognition (not all solutions \
23
+ support the same languages), and then choose the picture to consider. It is possible to upload a file, \
24
+ to take a picture, or to use a demo file. \
25
+ It is then possible to change the default values for the text area detection process, \
26
+ before launching the detection task for each solution.\n
27
+ The different results are then presented.
28
+
29
+ The 2nd step is to choose one of these \
30
+ detection results, in order to carry out the text recognition process there. It is also possible to change \
31
+ the default settings for each solution.''')
32
+ st.write("")
33
+ st.markdown("###### The recognition results appear in 2 formats:")
34
+ st.markdown(''' - a visual format resumes the initial image, replacing the detected areas with \
35
+ the recognized text. The background is + or - strongly colored in green according to the \
36
+ confidence level of the recognition.
37
+ A slider allows you to change the font size, another \
38
+ allows you to modify the confidence threshold above which the text color changes: if it is at \
39
+ 70% for example, then all the texts with a confidence threshold higher or equal to 70 will appear \
40
+ in white, in black otherwise.''')
41
+ st.markdown(" - a detailed format presents the results in a table, for each text box detected. \
42
+ It is possible to download this results in a local csv file.")
43
+
44
+
45
+ st.markdown('-----')
46
+
47
+
48
+ lib = "But, :orange[before evaluating OCR solutions], you may want to verify that the image is \
49
+ of sufficient quality for an OCR task. And if it isn't, you might want to be able to \
50
+ improve its quality.\n This is what the application's tab 'Image processing' allows you to do."
51
+ st.markdown(lib)
52
+
53
+ st.markdown('''#### :orange[Image quality verification and improvement]''')
54
+ with st.expander("See details:", expanded=True):
55
+ st.write('''Here, you can run a recognition test with basic PPOCR. This displays the text areas \
56
+ detected in the image, along with their values and probabilities.''')
57
+ st.markdown('The **Image Processing** tab offers several operations: resize, rotate, filtering, \
58
+ morphological transformations, and thresholding.')
59
+ st.write('Special care has been taken to document the various operations, including links to \
60
+ documentation and explanatory pop-ups for the various parameters:')
61
+ st.image("doc.png", width=500)
62
+ st.markdown('For each operation, you can choose whether or not to apply the transformation \
63
+ to the image being processed using the **"Apply"** toggle.')
64
+ st.markdown('When the result is satisfactory, you can view a detailed list of the various \
65
+ operations performed on the original image using the **"List of operations"** button.')
66
+ st.markdown('Finally, you can download the resulting image.')
doc.png ADDED
enhance.py ADDED
@@ -0,0 +1,874 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import cv2
3
+ import imutils
4
+ from paddleocr import PaddleOCR, draw_ocr
5
+ from PIL import Image
6
+ import io
7
+ import os
8
+ import numpy as np
9
+ import ast
10
+ import operator
11
+ import matplotlib.pyplot as plt
12
+
13
+
14
+ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
15
+
16
+ st.markdown("""
17
+ <style>
18
+ .main > div:first-of-type {
19
+ padding: 1em 2em 2em 2em;
20
+ }
21
+ </style>
22
+ """, unsafe_allow_html=True)
23
+
24
+ ###################################################################################################
25
+ ## INITIALISATIONS
26
+ ###################################################################################################
27
+ ###
28
+ @st.cache_data(show_spinner=True)
29
+ def initializations():
30
+ print("Initializations ...")
31
+ out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \
32
+ 'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
33
+ 'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \
34
+ 'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \
35
+ 'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \
36
+ 'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \
37
+ 'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \
38
+ 'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \
39
+ 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \
40
+ 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \
41
+ 'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \
42
+ 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \
43
+ 'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \
44
+ 'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \
45
+ 'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
46
+ 'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}
47
+
48
+ out_dict_interpolation = {"INTER_LINEAR": cv2.INTER_LINEAR,
49
+ "INTER_NEAREST": cv2.INTER_NEAREST,
50
+ # "INTER_LINEAR_EXACT": cv2.INTER_LINEAR_EXACT,
51
+ "INTER_AREA": cv2.INTER_AREA,
52
+ "INTER_CUBIC": cv2.INTER_CUBIC,
53
+ "INTER_LANCZOS4": cv2.INTER_LANCZOS4,
54
+ # "INTER_NEAREST_EXACT": cv2.INTER_NEAREST_EXACT,
55
+ # "INTER_MAX": cv2.INTER_MAX,
56
+ # "WARP_FILL_OUTLIERS": cv2.WARP_FILL_OUTLIERS,
57
+ # "WARP_INVERSE_MAP": cv2.WARP_INVERSE_MAP,
58
+ }
59
+
60
+ out_dict_thresholding_type = {"THRESH_BINARY": cv2.THRESH_BINARY,
61
+ "THRESH_BINARY_INV": cv2.THRESH_BINARY_INV,
62
+ "THRESH_TRUNC": cv2.THRESH_TRUNC,
63
+ "THRESH_TOZERO": cv2.THRESH_TOZERO,
64
+ }
65
+
66
+ out_dict_adaptative_method = {"ADAPTIVE_THRESH_MEAN_C": cv2.ADAPTIVE_THRESH_MEAN_C,
67
+ "ADAPTIVE_THRESH_GAUSSIAN_C": cv2.ADAPTIVE_THRESH_GAUSSIAN_C}
68
+
69
+ return out_dict_lang_ppocr, out_dict_interpolation, out_dict_thresholding_type, out_dict_adaptative_method
70
+
71
+ ###################################################################################################
72
+ ## FONTIONS
73
+ ###################################################################################################
74
+ ###
75
+ @st.cache_data(show_spinner=False)
76
+ def load_image(in_image_file):
77
+ """Load input file and open it
78
+ Args:
79
+ in_image_file (string or Streamlit UploadedFile): image to consider
80
+ Returns:
81
+ matrix : input file opened with Opencv
82
+ """
83
+ #if isinstance(in_image_file, str):
84
+ # out_image_path = "img."+in_image_file.split('.')[-1]
85
+ #else:
86
+ # out_image_path = "img."+in_image_file.name.split('.')[-1]
87
+ if isinstance(in_image_file, str):
88
+ out_image_path = "tmp_"+in_image_file
89
+ else:
90
+ out_image_path = "tmp_"+in_image_file.name
91
+ img = Image.open(in_image_file)
92
+ img_saved = img.save(out_image_path)
93
+ # Read image
94
+ # out_image_orig = Image.open(out_image_path)
95
+ out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)
96
+
97
+ st.session_state.resize = False
98
+ st.session_state.scaling_factor = None
99
+ st.session_state.interpolation = None
100
+ st.session_state.rotate = None
101
+ st.session_state.angle = None
102
+ st.session_state.convolution = None
103
+ st.session_state.text_convol = None
104
+ st.session_state.convol_kernel = None
105
+ st.session_state.averaging = None
106
+ st.session_state.averaging_kernel_size = None
107
+ st.session_state.gaussian_bluring = None
108
+ st.session_state.gb_kernel_size = None
109
+ st.session_state.sigmaX = None
110
+ st.session_state.sigmaY = None
111
+ st.session_state.median_bluring = None
112
+ st.session_state.mb_kernel_size = None
113
+ st.session_state.bilateral_filtering = None
114
+ st.session_state.d = None
115
+ st.session_state.sigma_color = None
116
+ st.session_state.sigma_space = None
117
+ st.session_state.erosion = None
118
+ st.session_state.erosion_kernel_size = None
119
+ st.session_state.nb_iter_erosion = None
120
+ st.session_state.dilation = None
121
+ st.session_state.dilation_kernel_size = None
122
+ st.session_state.nb_iter_dilation = None
123
+ st.session_state.binarization = None
124
+ st.session_state.bin_thresh = None
125
+ st.session_state.bin_thresh = None
126
+ st.session_state.bin_thresholding_type = None
127
+ st.session_state.bin_otsu = None
128
+ st.session_state.thresh_typ = None
129
+ st.session_state.adaptative_thresh = None
130
+ st.session_state.at_thresholding_type = None
131
+ st.session_state.at_max_value = None
132
+ st.session_state.at_adaptative_method = None
133
+ st.session_state.at_block_size = None
134
+ st.session_state.at_const = None
135
+ st.session_state.processed_image = None
136
+
137
+ return out_image_cv2, out_image_path
138
+ ###
139
+ def eval_expr(expr):
140
+ """Eval numeric expression
141
+ Args:
142
+ expr (string): numeric expression
143
+ Returns:
144
+ float: eval result
145
+ """
146
+ result = 1.
147
+ # Dictionnary of authorized operators
148
+ operators = {
149
+ ast.Add: operator.add,
150
+ ast.Sub: operator.sub,
151
+ ast.Mult: operator.mul,
152
+ ast.Div: operator.truediv,
153
+ ast.Pow: operator.pow,
154
+ ast.USub: operator.neg,
155
+ }
156
+ def _eval(node):
157
+ if isinstance(node, ast.Expression):
158
+ return _eval(node.body)
159
+ elif isinstance(node, ast.Constant): # nombre
160
+ return node.value
161
+ elif isinstance(node, ast.BinOp): # opérations binaires
162
+ return operators[type(node.op)](_eval(node.left), _eval(node.right))
163
+ elif isinstance(node, ast.UnaryOp): # opérations unaires (-n)
164
+ return operators[type(node.op)](_eval(node.operand))
165
+ else:
166
+ raise TypeError(node)
167
+ try:
168
+ parsed = ast.parse(expr, mode='eval')
169
+ result = _eval(parsed.body)
170
+ except:
171
+ pass
172
+ return result
173
+ ###
174
+ def text_kernel_to_latex(text_eval):
175
+ """Try to parse a kernel text description like: 1/6 * [[1,1],[1,1]]
176
+ Args:
177
+ text_eval (string): the string with the kernel expression
178
+ Returns:
179
+ string: left part of input string before *
180
+ list: right part of input string after *
181
+ string: latex expression corresponding to the text kernel input
182
+ """
183
+ list_eval = text_eval.split('*')
184
+ text_kernel = list_eval[-1].strip()
185
+ list_kernel = ast.literal_eval(text_kernel)
186
+ latex = "\\begin{bmatrix}\n"
187
+ for row in list_kernel:
188
+ latex += " & ".join(map(str, row)) + " \\\\\n"
189
+ latex += "\\end{bmatrix}"
190
+ text_coeff = 1.
191
+ latex_text = latex
192
+ if len(list_eval) > 1:
193
+ text_coeff = list_eval[0].strip()
194
+ latex_text = text_coeff + ' ' + latex
195
+ return text_coeff, list_kernel, latex_text
196
+ ###
197
+ def get_img_fig(img):
198
+ """Plot image with matplotlib, in order to have image size
199
+ Args:
200
+ img (Image): Image to show
201
+ Returns:
202
+ Matplotlib figure
203
+ """
204
+ fig = plt.figure()
205
+ if len(img.shape) == 3:
206
+ plt.imshow(img, cmap=None)
207
+ else:
208
+ plt.imshow(img, cmap='gray')
209
+ return fig
210
+
211
+ @st.fragment
212
+ def show_latex(latex_code):
213
+ st.latex(latex_code)
214
+ ###################################################################################################
215
+ ## STREAMLIT APP
216
+ ###################################################################################################
217
+ st.title(''':orange[Image check and enhance for OCR task]''')
218
+ st.write("")
219
+ st.write("")
220
+ st.write("")
221
+ st.set_option("client.showErrorDetails", False)
222
+
223
+ dict_lang_ppocr, dict_interpolation, dict_thresholding_type, dict_adaptative_method = initializations()
224
+
225
+ cols = st.columns([0.25, 0.25, 0.5])
226
+ cols[0].markdown("#### :orange[Choose picture:]")
227
+ img_typ = cols[0].radio("#### :orange[Choose picture type:]", ['Upload file', 'Take a picture', 'Use a demo file'], \
228
+ index=0)
229
+ if img_typ == 'Upload file':
230
+ image_file = cols[1].file_uploader("Upload a file:", type=["png","jpg","jpeg"])
231
+
232
+ if img_typ == 'Take a picture':
233
+ image_file = cols[1].camera_input("Take a picture:")
234
+ if img_typ == 'Use a demo file':
235
+ image_file = 'img_demo_enhance.png'
236
+
237
+ ##----------- Process input image -----------------------------------------------------------------
238
+ if image_file is not None:
239
+ img_cv2, image_path = load_image(image_file)
240
+
241
+ cols[2].markdown('#### :orange[Original image]')
242
+ cnt_img_ori = cols[2].container(height=300, border=False)
243
+ #cnt_img_ori.image(img_cv2) #, use_container_width=True)
244
+ cnt_img_ori.pyplot(get_img_fig(img_cv2))
245
+ col1, col2 = st.columns([0.5, 0.5]) #gap="medium")
246
+
247
+ col1.markdown('#### :orange[Processed image]')
248
+ list_op = []
249
+
250
+ if col1.checkbox("GrayScale"):
251
+ try:
252
+ img_first = cv2.cvtColor(img_cv2.copy(), cv2.COLOR_BGR2GRAY)
253
+ list_op.append("Grayscale")
254
+ except Exception as e:
255
+ st.exception(e)
256
+ else:
257
+ img_first = img_cv2.copy()
258
+
259
+ if col1.checkbox("Bit-wise inversion"):
260
+ try:
261
+ img_first = cv2.bitwise_not(img_first)
262
+ list_op.append("Bit-wise inversion")
263
+ except Exception as e:
264
+ st.exception(e)
265
+
266
+ # Processed image construction
267
+ cnt_img_wrk = col1.container(height=500, border=False)
268
+ img_processed = cnt_img_wrk.empty()
269
+ img_wrk = img_first.copy()
270
+
271
+ if st.session_state.resize:
272
+ try:
273
+ img_wrk = cv2.resize(img_wrk, None, fx=st.session_state.scaling_factor,
274
+ fy=st.session_state.scaling_factor,
275
+ interpolation=dict_interpolation[st.session_state.interpolation])
276
+ list_op.append("Resize - fx="+str(st.session_state.scaling_factor)+", fy="+
277
+ str(st.session_state.scaling_factor)+", interpolation="+
278
+ st.session_state.interpolation)
279
+ except Exception as e:
280
+ st.exception(e)
281
+
282
+ if st.session_state.rotate:
283
+ try:
284
+ img_wrk = imutils.rotate(img_wrk, angle=st.session_state.angle)
285
+ list_op.append("Rotate - angle="+str(st.session_state.angle))
286
+ except Exception as e:
287
+ st.exception(e)
288
+
289
+ if st.session_state.convolution:
290
+ try:
291
+ img_wrk = cv2.filter2D(src=img_wrk, ddepth=-1, kernel=st.session_state.convol_kernel)
292
+ list_op.append("Filtering - Custom 2D Convolution - kernel="+ st.session_state.text_convol)
293
+ except Exception as e:
294
+ st.exception(e)
295
+
296
+ if st.session_state.averaging:
297
+ try:
298
+ img_wrk = cv2.blur(src=img_wrk, ksize=st.session_state.averaging_kernel_size)
299
+ list_op.append("Filtering - Averaging - kernel_size="+
300
+ str(st.session_state.averaging_kernel_size))
301
+ except Exception as e:
302
+ st.exception(e)
303
+
304
+ if st.session_state.gaussian_bluring:
305
+ try:
306
+ img_wrk = cv2.GaussianBlur(src=img_wrk, ksize=st.session_state.gb_kernel_size, \
307
+ sigmaX=st.session_state.sigmaX, sigmaY=st.session_state.sigmaY)
308
+ list_op.append("Filtering - Gaussian Blurring - ksize="+ \
309
+ str(st.session_state.gb_kernel_size)+", sigmaX="+
310
+ str(st.session_state.sigmaX)+", sigmaY="+str(st.session_state.sigmaY))
311
+ except Exception as e:
312
+ st.exception(e)
313
+
314
+ if st.session_state.median_bluring:
315
+ try:
316
+ img_wrk = cv2.medianBlur(img_wrk, st.session_state.mb_kernel_size)
317
+ list_op.append("Filtering - Median Blurring - kernel_size="+ \
318
+ str(st.session_state.mb_kernel_size))
319
+ except Exception as e:
320
+ st.exception(e)
321
+
322
+ if st.session_state.bilateral_filtering:
323
+ try:
324
+ img_wrk = cv2.bilateralFilter(img_wrk, st.session_state.d, st.session_state.sigma_color,
325
+ st.session_state.sigma_space)
326
+ list_op.append("Filtering - Bilateral Filtering - d="+ str(st.session_state.d)+
327
+ ", sigma_color="+str(st.session_state.sigma_color)+ \
328
+ ", sigma_space="+str(st.session_state.sigma_space))
329
+ except Exception as e:
330
+ st.exception(e)
331
+
332
+ if st.session_state.erosion:
333
+ try:
334
+ kernel = np.ones((st.session_state.erosion_kernel_size,
335
+ st.session_state.erosion_kernel_size),
336
+ np.uint8)
337
+ img_wrk = cv2.erode(img_wrk, kernel, iterations=st.session_state.nb_iter_erosion)
338
+ list_op.append("Erosion - kernel_size="+str(st.session_state.erosion_kernel_size)+ \
339
+ ", iterations="+str(st.session_state.nb_iter_erosion))
340
+ except Exception as e:
341
+ st.exception(e)
342
+
343
+ if st.session_state.dilation:
344
+ try:
345
+ kernel = np.ones((st.session_state.dilation_kernel_size,
346
+ st.session_state.dilation_kernel_size),
347
+ np.uint8)
348
+ img_wrk = cv2.dilate(img_wrk, kernel, iterations=st.session_state.nb_iter_dilation)
349
+ list_op.append("Dilation - kernel_size="+str(st.session_state.dilation_kernel_size )+ \
350
+ ", iterations="+str(st.session_state.nb_iter_dilation))
351
+ except Exception as e:
352
+ st.exception(e)
353
+
354
+ if st.session_state.binarization:
355
+ try:
356
+ ret, img_wrk = cv2.threshold(img_wrk, st.session_state.bin_thresh,
357
+ st.session_state.bin_value,
358
+ st.session_state.thresh_typ)
359
+ list_op.append("Thresholding - thresh="+str(st.session_state.bin_thresh)+ \
360
+ ", maxval="+str(st.session_state.bin_value)+", type="+ \
361
+ st.session_state.bin_thresholding_type+", otsu="+ \
362
+ str(st.session_state.bin_otsu))
363
+ except Exception as e:
364
+ st.exception(e)
365
+
366
+ if st.session_state.adaptative_thresh:
367
+ try:
368
+ img_wrk = cv2.adaptiveThreshold(img_wrk, st.session_state.at_max_value,
369
+ dict_adaptative_method[st.session_state.at_adaptative_method],
370
+ dict_thresholding_type[st.session_state.at_thresholding_type],
371
+ st.session_state.at_block_size, st.session_state.at_const)
372
+ list_op.append("Adaptative thresholding - maxValue="+
373
+ str(st.session_state.at_max_value)+", adaptiveMethod="+
374
+ st.session_state.at_adaptative_method+", thresholdType"+
375
+ ", thresholding_type="+st.session_state.at_thresholding_type+
376
+ ", blockSize="+str(st.session_state.at_block_size)+", C="+
377
+ str(st.session_state.at_const))
378
+ except Exception as e:
379
+ st.exception(e)
380
+
381
+ # Show image
382
+ img_processed.pyplot(get_img_fig(img_wrk))
383
+ st.session_state.processed_image = img_wrk
384
+
385
+ # Process
386
+ col2.markdown('#### :orange[Check & enhance]')
387
+
388
+ with col2.expander(":blue[Image processing]", expanded=False):
389
+ tab1, tab2, tab3, tab4, tab5 = \
390
+ st.tabs(["Resize", "Rotate", "Filtering",
391
+ "Morphologie", "Thresholding"])
392
+ with tab1: # Resize
393
+ with tab1.form("Resize parameters"):
394
+ st.session_state.scaling_factor = st.slider("Scaling factor :", 0.1, 20., 1., 0.1)
395
+ cols_tab1 = st.columns([0.1, 0.9], gap="medium", vertical_alignment="center")
396
+ cols_tab1[0].markdown("💬", help="""An interpolation function’s goal is
397
+ to examine neighborhoods of pixels and use these neighborhoods to optically increase or decrease
398
+ the size of the image without introducing distortions (or at least as few distortions
399
+ as possible).\n
400
+ ```cv2.INTER_LINEAR``` This option uses the bilinear interpolation algorithm. Unlike INTER_NEAREST,
401
+ this does the interpolation in two dimensions and predicts the function used to calculate the color
402
+ of a pixel. This algorithm is effective in handling visual distortions while zooming or
403
+ enlarging an image.\n
404
+ ```cv2.INTER_NEAREST``` This option uses the nearest neighbor interpolation algorithm. It retains
405
+ the sharpness of the edges though the overall image may be blurred.\n
406
+ ```cv2.INTER_LINEAR_EXACT```is a modification of ```INTER_LINEAR``` and both uses bilinear
407
+ interpolation algorithm. The only difference is that the calculations in ```INTER_LINEAR_EXACT```
408
+ are accurate to a bit.\n
409
+ ```cv2.INTER_AREA``` option uses resampling using pixel area relation technique. While enlarging
410
+ images, INTER_AREA work same as INTER_NEAREST. In other cases, ```INTER_AREA works``` better in
411
+ image decimation and avoiding false inference patterns in images (moire pattern).\n
412
+ ```cv2.INTER_CUBIC``` option uses bicubic interpolation technique. This is an extension of cubic
413
+ interpolation technique and is used for 2 dimension regular grid patterns.\n
414
+ ```cv2.INTER_LANCZOS4``` option uses Lanczos interpolation over 8 x 8 pixel neighborhood technique.
415
+ It uses Fourier series and Chebyshev polynomials and is suited for images with large number of
416
+ small size details.\n
417
+ ```cv2.INTER_NEAREST_EXACT ``` is a modification of INTER_NEAREST with bit level accuracy.\n
418
+ ```cv2.INTER_MAX ``` option uses mask for interpolation codes.\n
419
+ ```cv2.WARP_FILL_OUTLIERS ``` interpolation technique skips the outliers during interpolation calculations.\n
420
+ ```cv2.WARP_INVERSE_MAP ``` option uses inverse transformation technique for interpolation.\n""")
421
+ cols_tab1[0].link_button("📚", "https://opencv.org/blog/resizing-and-rescaling-images-with-opencv/#h-resizing-with-different-interpolation-methods")
422
+ st.session_state.interpolation = cols_tab1[1].selectbox("Interpolation method:",
423
+ list(dict_interpolation.keys()))
424
+ c1, c2 = st.columns(2)
425
+ apply_tab1 = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=1)
426
+ with c2:
427
+ submit_tab1 = st.form_submit_button(":green[Confirm]")
428
+
429
+ if submit_tab1:
430
+ st.session_state.resize = apply_tab1
431
+ st.rerun()
432
+
433
+ with tab2: # Rotate
434
+ with tab2.form("Rotate parameters"):
435
+ st.session_state.angle = st.slider("Angle :", 0, 360, 0, step=10)
436
+ c1, c2 = st.columns(2)
437
+ apply_tab2 = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=2)
438
+ with c2:
439
+ submit_tab2 = st.form_submit_button(":green[Confirm]")
440
+
441
+ if submit_tab2:
442
+ st.session_state.rotate = apply_tab2
443
+ st.rerun()
444
+
445
+ with tab3: # Filtering
446
+ st.write("📚 :blue[*More about image filtering*] 👉 \
447
+ [here](https://learnopencv.com/image-filtering-using-convolution-in-opencv/)")
448
+ selection = st.segmented_control("Filtering type",
449
+ ["Custom 2D Convolution", "Blurring"],
450
+ selection_mode="single")
451
+ match selection:
452
+ case "Custom 2D Convolution":
453
+ with st.form("tab3_1"):
454
+ st.write("📚 :blue[*More about convolution matrix*] 👉 \
455
+ [here](https://en.wikipedia.org/wiki/Kernel_(image_processing))")
456
+ text_convol = st.text_input("Write your custom kernel here (example : 1/9 * [[1,1,1], [1,1,1], [1,1,1]]):",
457
+ value=None)
458
+ kernel = None
459
+ if text_convol is not None:
460
+ try:
461
+ text_coeff, list_kernel, latex_code = text_kernel_to_latex(text_convol)
462
+ coeff = eval_expr(text_coeff)
463
+ kernel = coeff * np.array(list_kernel)
464
+ show_latex(latex_code)
465
+ except Exception as e:
466
+ st.exception(e)
467
+ text_convol = None
468
+ else:
469
+ text_coeff, list_kernel, latex_code = \
470
+ text_kernel_to_latex("1/9 * [[1,1,1], [1,1,1], [1,1,1]]")
471
+ show_latex(latex_code)
472
+
473
+ c1, c2 = st.columns(2)
474
+ apply_tab31 = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=3)
475
+ with c2:
476
+ submit_tab31 = st.form_submit_button(":green[Confirm]")
477
+
478
+ if submit_tab31:
479
+ st.session_state.convolution = apply_tab31
480
+ st.session_state.text_convol = text_convol
481
+ st.session_state.convol_kernel = kernel
482
+ st.rerun()
483
+
484
+ case "Blurring":
485
+ st.write("📚 :blue[*More about blurring techniques*] 👉 \
486
+ [here](https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html)")
487
+ b1, b2, b3, b4 = st.tabs(["Averaging", "Gaussian Blurring", "Median Blurring",
488
+ "Bilateral Filtering"])
489
+ # typ_blurring = st.segmented_control("Bluring type",
490
+ # ["Averaging", "Gaussian Blurring", "Median Blurring",
491
+ # "Bilateral Filtering"],
492
+ # selection_mode="multi")
493
+
494
+ with b1:
495
+ with st.form("tab_32a"):
496
+ st.markdown("💬 :green[Averaging?]",
497
+ help="This is done by convolving an image with a normalized box filter.\
498
+ It simply takes the average of all the pixels under the kernel \
499
+ area and replaces the central element."
500
+ )
501
+ kernel_width = st.slider("Kernel size width:", 2, 20, None, 1)
502
+ kernel_height = st.slider("Kernel size height:", 2, 20, None, 1)
503
+
504
+ c1, c2 = st.columns(2)
505
+ apply_tab32a = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=4)
506
+ with c2:
507
+ submit_tab32a = st.form_submit_button(":green[Confirm]")
508
+
509
+ if submit_tab32a:
510
+ st.session_state.averaging = apply_tab32a
511
+ st.session_state.averaging_kernel_size = (kernel_width, kernel_height)
512
+ st.rerun()
513
+
514
+ with b2:
515
+ with st.form("tab_32b"):
516
+ st.markdown("💬 :green[Gaussian Blurringing?]",
517
+ help="In this method, instead of a box filter, a Gaussian kernel is used. \
518
+ We should specify the width and height of the kernel which should be positive and odd. \
519
+ We also should specify the standard deviation in the X and Y directions, `sigmaX` and `sigmaY` respectively. \
520
+ If only `sigmaX` is specified, `sigmaY` is taken as the same as sigmaX. If both are given as zeros, they are \
521
+ calculated from the kernel size.\n \
522
+ Gaussian blurring is highly effective in removing Gaussian noise from an image.")
523
+ kernel_width = st.slider("Kernel size width:", 2, 20, None, 1,)
524
+ kernel_height = st.slider("Kernel size height:", 2, 20, None, 1)
525
+ st.markdown("Standard deviations of the Gaussian kernel:",
526
+ help="""The parameters `sigmaX` and `sigmaY` represent the standard deviations
527
+ of the Gaussian kernel in the horizontal (X) and vertical (Y) directions,
528
+ respectively. These values control the extent of blurring applied to the image.​\n
529
+ **Typical Values for sigmaX and sigmaY:**
530
+ - Low values (e.g., 1–3): Apply a mild blur, useful for slight noise reduction while preserving image details.​
531
+ - Moderate values (e.g., 5–10): Produce a more noticeable blur, helpful for reducing more significant noise or smoothing out textures.
532
+ - High values (e.g., >10): Result in a strong blur, which can be used for artistic effects or to obscure details.​
533
+ It's common practice to set sigmaX and sigmaY to 0. In this case, OpenCV calculates the standard deviations based on the kernel size (ksize).
534
+ If only sigmaX is specified and sigmaY is set to 0, OpenCV uses the same value for both directions. ​\n
535
+ **Recommendations:**
536
+ - Specify sigmaX and sigmaY explicitly: For precise control over the blurring effect, define both parameters based on the desired outcome.​
537
+ - Use sigmaX = 0 and sigmaY = 0: To allow OpenCV to compute the standard deviations automatically from the kernel size.​
538
+ - Choose an appropriate kernel size: The ksize parameter should be a tuple of positive odd integers (e.g., (3, 3), (5, 5)).
539
+ """)
540
+ sigmaX = st.slider("sigmaX:", 0, 20, 0, 1)
541
+ sigmaY = st.slider("sigmaY:", 0, 20, 0, 1)
542
+
543
+ c1, c2 = st.columns(2)
544
+ apply_tab32b = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=5)
545
+ with c2:
546
+ submit_tab32b = st.form_submit_button(":green[Confirm]")
547
+
548
+ if submit_tab32b:
549
+ st.session_state.gaussian_bluring = apply_tab32b
550
+ st.session_state.gb_kernel_size = (kernel_width, kernel_height)
551
+ st.session_state.sigmaX = sigmaX
552
+ st.session_state.sigmaY = sigmaY
553
+ st.rerun()
554
+
555
+ with b3:
556
+ with st.form("tab_32c"):
557
+ st.markdown("💬 :green[Median Blurring?]",
558
+ help="It takes the median of all the pixels under the \
559
+ kernel area and the central element is replaced with this median value. Interestingly, in the above \
560
+ filters, the central element is a newly calculated value which may be a pixel value in the image or a new value. \
561
+ But in median blurring, the central element is always replaced by some pixel value in the image. \
562
+ It reduces the noise effectively. Its kernel size should be a positive odd integer.\n \
563
+ Median blurring is highly effective against salt-and-pepper noise in an image.")
564
+ kernel_size = st.slider("Kernel size:", 3, 15, None, 2, key=101)
565
+
566
+ c1, c2 = st.columns(2)
567
+ apply_tab32c = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=6)
568
+ with c2:
569
+ submit_tab32c = st.form_submit_button(":green[Confirm]")
570
+
571
+ if submit_tab32c:
572
+ st.session_state.median_bluring = apply_tab32c
573
+ st.session_state.mb_kernel_size = kernel_size
574
+ st.rerun()
575
+
576
+ with b4:
577
+ with st.form("tab_32d"):
578
+ st.markdown("💬 :green[Bilateral Filtering?]",
579
+ help="It is highly effective in noise removal while \
580
+ keeping edges sharp. But the operation is slower compared to other filters. We already saw that a \
581
+ Gaussian filter takes the neighbourhood around the pixel and finds its Gaussian weighted average. \
582
+ This Gaussian filter is a function of space alone, that is, nearby pixels are considered while \
583
+ filtering. It doesn't consider whether pixels have almost the same intensity. It doesn't consider \
584
+ whether a pixel is an edge pixel or not. So it blurs the edges also, which we don't want to do.\n \
585
+ Bilateral filtering also takes a Gaussian filter in space, but one more Gaussian filter which is \
586
+ a function of pixel difference. \
587
+ The Gaussian function of space makes sure that only nearby pixels are considered for blurring, \
588
+ while the Gaussian function of intensity difference makes sure that only those pixels with similar \
589
+ intensities to the central pixel are considered for blurring. \
590
+ So it preserves the edges since pixels at edges will have large intensity variation.")
591
+ st.markdown("Diameter of each pixel neighborhood that is used during filtering:",
592
+ help=""" **Effect:**\n
593
+ A larger `d` value means that more neighboring pixels are considered in the filtering process, leading to a more pronounced
594
+ blurring effect. Conversely, a smaller `d` focuses the filter on a tighter area, preserving more details.​
595
+ **Automatic Calculation:**\n
596
+ If `d` is set to a non-positive value (e.g., 0 or negative), OpenCV automatically calculates it based on the sigmaSpace parameter.
597
+ Specifically, the radius is computed as `radius = cvRound(sigmaSpace * 1.5)`, and then `d = radius * 2 + 1` to ensure it's an odd
598
+ number. This ensures that the kernel has a central pixel. ​
599
+ **Typical Values for `d`:**\n
600
+ The choice of d depends on the desired balance between noise reduction and edge preservation:​
601
+ - Small d (e.g., 5 to 9): Suitable for subtle smoothing while maintaining edge sharpness.​
602
+ - Medium d (e.g., 9 to 15): Offers a balance between noise reduction and detail preservation.​
603
+ - Large d (e.g., 15 and above): Provides stronger blurring, which may be useful for artistic effects but can lead to loss of
604
+ fine details.​
605
+ **Recommendations:**\n
606
+ - Large filters (d > 5) are very slow, so it is recommended to use `d=5` for real-time applications, and perhaps
607
+ `d=9` for offline applications that need heavy noise filtering.
608
+ - Start with Moderate Values: Begin with `d=9`, `sigmaColor=75`, and `sigmaSpace=75` as a baseline. Adjust these values based on
609
+ the specific requirements of your application.​
610
+ - Consider Image Size: For larger images, you might need to increase `d` to achieve a noticeable effect. Conversely,
611
+ for smaller images, a smaller `d` might suffice.​
612
+ - Balance with `sigmaColor` and `sigmaSpace`: Ensure that `d` is appropriately balanced with `sigmaColor` and
613
+ `sigmaSpace`. An excessively large `sigmaSpace` with a small `d` might not utilize the full potential of the spatial filtering.
614
+ """)
615
+ d_value = st.slider("d:", 3, 15, None, 2)
616
+ st.markdown("`sigmaColor` and `sigmaSpace`:", help="""
617
+ `sigmaColor`: This parameter defines the filter sigma in the color space. A larger value means that pixels with more significant
618
+ color differences will be mixed together, resulting in areas of semi-equal color.​
619
+ `sigmaSpace`: This parameter defines the filter sigma in the coordinate space. A larger value means that pixels farther apart
620
+ will influence each other as long as their colors are close enough.​\n
621
+ These parameters work together to ensure that the filter smooths the image while preserving edges.​
622
+ **Typical Values for `sigmaColor` and `sigmaSpace`:**\n
623
+ The choice of `sigmaColor` and `sigmaSpace` depends on the specific application and the desired effect.
624
+ However, some commonly used values are:​
625
+ - `sigmaColor`: Values around 75 are often used for general smoothing while preserving edges.​
626
+ - `sigmaSpace`: Similarly, values around 75 are typical for maintaining edge sharpness while reducing noise.​
627
+ For example, applying the bilateral filter with `d=9`, `sigmaColor=75`, and `sigmaSpace=75` is a common practice.
628
+ **Recommendations:**`\n
629
+ - Start with Equal Values: Setting `sigmaColor` and `sigmaSpace` to the same value (e.g., 75) is a good starting point.​
630
+ - Adjust Based on Results: If the image appears too blurred, reduce the values. If noise is still present, increase them.​
631
+ - Consider Image Characteristics: For images with high noise, higher values may be necessary. For images where edge preservation
632
+ is critical, lower values are preferable.""")
633
+ sigma_color = st.slider("sigmaColor", 1, 255, None, 1)
634
+ sigma_space = st.slider("sigmaSpace", 1, 255, None, 1)
635
+
636
+ c1, c2 = st.columns(2)
637
+ apply_tab32d = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=7)
638
+ with c2:
639
+ submit_tab32d = st.form_submit_button(":green[Confirm]")
640
+
641
+ if submit_tab32d:
642
+ st.session_state.bilateral_filtering = apply_tab32d
643
+ st.session_state.d = d_value
644
+ st.session_state.sigma_color = sigma_color
645
+ st.session_state.sigma_space = sigma_space
646
+ st.rerun()
647
+
648
+ with tab4: # Morphologie
649
+ list_select = st.segmented_control("Morphological operation:",
650
+ ["Erosion", 'Dilation'],
651
+ selection_mode="multi")
652
+ if "Erosion" in list_select:
653
+ with st.form("tab_4a"):
654
+ st.markdown("💬 :green[Erosion?]",
655
+ help="The basic idea of erosion is just like soil erosion only, it erodes \
656
+ away the boundaries of foreground object (Always try to keep foreground in white). \
657
+ So what it does? The kernel slides through the image (as in 2D convolution). A pixel in the \
658
+ original image (either 1 or 0) will be considered 1 only if all the pixels under the kernel is 1, \
659
+ otherwise it is eroded (made to zero). \n \
660
+ So what happends is that, all the pixels near boundary will be discarded depending upon the \
661
+ size of kernel. So the thickness or size of the foreground object decreases or simply white region \
662
+ decreases in the image. \n\
663
+ It is useful for removing small white noises, detach two connected objects etc. \n \
664
+ :orange[**Best practice :** convert to grayscale before apply erosion.]​")
665
+ kernel_size_ero = st.slider("Kernel size:", 3, 21, 3, 2, key=102)
666
+ nb_iter = st.slider('Iterations number:', 1, 7, 1, 1, key=201)
667
+
668
+ c1, c2 = st.columns(2)
669
+ apply_tab4a = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=8)
670
+ with c2:
671
+ submit_tab4a = st.form_submit_button(":green[Confirm]")
672
+
673
+ if submit_tab4a:
674
+ st.session_state.erosion = apply_tab4a
675
+ st.session_state.erosion_kernel_size = kernel_size_ero
676
+ st.session_state.nb_iter_erosion = nb_iter
677
+ st.rerun()
678
+
679
+ if "Dilation" in list_select:
680
+ with st.form("tab_4b"):
681
+ st.markdown("💬 :green[Dilation?]",
682
+ help="The opposite of an erosion is a dilation. Just like an \
683
+ erosion will eat away at the foreground pixels, a dilation will grow the foreground pixels. \
684
+ Dilations increase the size of foreground objects and are especially useful for joining broken \
685
+ parts of an image together. Dilations, just as an erosion, also utilize structuring elements \
686
+ — a center pixel p of the structuring element is set to white if ANY pixel in the structuring \
687
+ element is > 0. \n \
688
+ :orange[**Best practice :** convert to grayscale before apply dilation.]​")
689
+ kernel_size_dil = st.slider("Kernel size:", 3, 21, 3, 2, key=103)
690
+ nb_iter = st.slider('Iterations number:', 1, 7, 1, 1, key=202)
691
+ kernel = np.ones((kernel_size_dil,kernel_size_dil),np.uint8)
692
+
693
+ c1, c2 = st.columns(2)
694
+ apply_tab4b = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=9)
695
+ with c2:
696
+ submit_tab4b = st.form_submit_button(":green[Confirm]")
697
+
698
+ if submit_tab4b:
699
+ st.session_state.dilation = apply_tab4b
700
+ st.session_state.dilation_kernel_size = kernel_size_dil
701
+ st.session_state.nb_iter_dilation = nb_iter
702
+ st.rerun()
703
+
704
+ with tab5: # Thresholding
705
+ selection = st.segmented_control("Type:", ["Binarization", "Adaptative thresholding"])
706
+ match selection:
707
+ case "Binarization":
708
+ with st.form("tab5_a"):
709
+ st.markdown("💬 :green[What is thresholding?]",
710
+ help='''Thresholding is the binarization of an image. In general, we seek to
711
+ convert a grayscale image to a binary image, where the pixels are either
712
+ 0 or 255.
713
+ A simple thresholding example would be selecting a threshold value T,
714
+ and then setting all pixel intensities less than T to 0, and all pixel
715
+ values greater than T to 255. In this way, we are able to create a binary
716
+ representation of the image.''')
717
+ st.markdown("*:orange[⚠ Image must be in gray scale]*")
718
+ cols_tab1 = st.columns([0.1, 0.9], gap="medium", vertical_alignment="center")
719
+ with cols_tab1[1]:
720
+ thresholding_type = cols_tab1[1].selectbox("Thresholding type:",
721
+ list(dict_thresholding_type.keys()))
722
+ with cols_tab1[0].popover(":material/info:", help="Help on thresholding type",
723
+ use_container_width=False):
724
+ st.link_button("📚:blue[cf. OpenCV documentation :]",
725
+ "https://docs.opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_transformations.html#threshold")
726
+
727
+ thresh = st.slider("Thresh :", 0, 255, 255, 1)
728
+ if thresholding_type in ["cv.THRESH_BINARY", "cv.THRESH_BINARY_INV"]:
729
+ value = st.slider("Value :", 0, 255, 255, 1)
730
+ else:
731
+ value = 255
732
+
733
+ cols_tab3 = st.columns(2, gap="medium", vertical_alignment="center")
734
+ otsu = cols_tab3[0].checkbox("Optimum Global Thresholding using Otsu’s Method?",
735
+ help='''Otsu’s method tries to find a threshold value
736
+ which minimizes the weighted within-class variance.
737
+ Since Variance is the spread of the distribution
738
+ about the mean. Thus, minimizing the within-class
739
+ variance will tend to make the classes compact.''')
740
+ cols_tab3[1].link_button("📚:blue[Documentation]",
741
+ "https://theailearner.com/2019/07/19/optimum-global-thresholding-using-otsus-method/")
742
+
743
+ thresh_typ = dict_thresholding_type[thresholding_type]
744
+
745
+ c1, c2 = st.columns(2)
746
+ apply_tab5a = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=10)
747
+ with c2:
748
+ submit_tab5a = st.form_submit_button(":green[Confirm]")
749
+
750
+ if submit_tab5a:
751
+ if otsu:
752
+ thresh_typ = thresh_typ+cv2.THRESH_OTSU
753
+ st.session_state.binarization = apply_tab5a
754
+ st.session_state.bin_thresh = thresh
755
+ st.session_state.bin_value = value
756
+ st.session_state.bin_thresholding_type = thresholding_type
757
+ st.session_state.bin_otsu = otsu
758
+ st.session_state.thresh_typ = thresh_typ
759
+ st.rerun()
760
+
761
+ case "Adaptative thresholding":
762
+ with st.form("tab5_b"):
763
+ st.markdown("💬 :green[What is adaptative thresholding?]",
764
+ help='''This is a usefull technique when dealing with images having non-uniform illumination.
765
+ In this, the threshold value is calculated separately for each pixel using
766
+ some statistics obtained from its neighborhood. This way we will get different thresholds
767
+ for different image regions and thus tackles the problem of varying illumination.''')
768
+ st.markdown("*:orange[⚠ Image must be in gray scale]*")
769
+ thresholding_type = st.selectbox("Thresholding type:",
770
+ list(dict_thresholding_type.keys())[:2])
771
+ max_value = st.slider("Max value :", 0, 255, 255, 1,
772
+ help="""This is the value assigned to the pixels after thresholding.
773
+ This depends on the thresholding type. If the type is cv2.THRESH_BINARY,
774
+ all the pixels greater than the threshold are assigned this maxValue.""")
775
+ adaptative_method = st.selectbox("Adaptative method:",
776
+ list(dict_adaptative_method.keys()),
777
+ help="""This tells us how the threshold is calculated from the pixel neighborhood.
778
+ This currently supports two methods:
779
+ - cv2.ADAPTIVE_THRESH_MEAN_C: In this, the threshold value is the mean of the neighborhood area.\n
780
+ - cv2.ADAPTIVE_THRESH_GAUSSIAN_C: In this, the threshold value is the weighted sum of the
781
+ neighborhood area. This uses Gaussian weights computed using getGaussiankernel() method.""")
782
+ block_size = st.slider("Block size:", 3, 21, 3, 2,
783
+ help='''**🔍 What is blockSize?**\n
784
+ In adaptive thresholding, the threshold for each pixel is determined based on a local neighborhood around it.
785
+ The blockSize parameter specifies the size of this neighborhood.
786
+ Specifically, it defines the dimensions of the square region (of size blockSize × blockSize) centered on the pixel being processed.
787
+ The threshold is then calculated based on the pixel values within this region.​\n
788
+ **✅ Acceptable Values for blockSize**\n
789
+ Must be an odd integer greater than 1: This ensures that the neighborhood has a central pixel.​
790
+ Common choices: 3, 5, 7, 9, 11, 13, 15, etc.​
791
+ Even numbers are invalid: Using an even blockSize (e.g., 2, 4, 6) would result in an error because
792
+ there would be no central pixel in the neighborhood.​\n
793
+ **🎯 Impact of blockSize on Thresholding**\n
794
+ Smaller blockSize (e.g., 3 or 5):​\n
795
+ - Captures fine details and small variations in illumination.​
796
+ - May be more sensitive to noise.​\n
797
+ Larger blockSize (e.g., 15 or 21):​\n
798
+ - Provides smoother thresholding, reducing the effect of noise.​
799
+ - Might overlook small features or details.
800
+
801
+ Choosing the appropriate blockSize depends on the specific characteristics of your image and the details you wish to preserve or suppress.''')
802
+ const = st.slider("C:", -10, 20, 0, 1,
803
+ help='''The parameter C serves as a constant subtracted from the computed mean or weighted mean of the
804
+ neighborhood pixels. This subtraction fine-tunes the thresholding process, allowing for better control
805
+ over the binarization outcome.
806
+ **🎯 Typical Values for C**
807
+ The optimal value for C varies depending on the image's characteristics, such as lighting conditions and noise levels. Commonly used values include:​
808
+ - 2 to 10: These values are often effective for standard images with moderate lighting variations.​
809
+ - Higher values (e.g., 15 or 20): Useful for images with significant noise or when a more aggressive thresholding is needed.​
810
+ - Negative values: Occasionally used to make the thresholding more lenient, capturing lighter details that might otherwise be missed.​
811
+
812
+ It's advisable to experiment with different C values to determine the most suitable one for your specific application. ''')
813
+
814
+ c1, c2 = st.columns(2)
815
+ apply_tab5b = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=11)
816
+ with c2:
817
+ submit_tab5b = st.form_submit_button(":green[Confirm]")
818
+
819
+ if submit_tab5b:
820
+ st.session_state.adaptative_thresh = apply_tab5b
821
+ st.session_state.at_max_value = max_value
822
+ st.session_state.at_adaptative_method = adaptative_method
823
+ st.session_state.at_thresholding_type = thresholding_type
824
+ st.session_state.at_block_size = block_size
825
+ st.session_state.at_const = const
826
+ st.rerun()
827
+
828
+ col1_a, col1_b = col1.columns(2)
829
+ if col1_a.button("📃 :blue[List of operations]"):
830
+ col1_a.write(list_op)
831
+
832
+ if col1_b.button("Prepare download"):
833
+ if len(img_wrk.shape) == 2:
834
+ pil_img = Image.fromarray(img_wrk).convert("L")
835
+ else:
836
+ img_rgb = cv2.cvtColor(img_wrk, cv2.COLOR_BGR2RGB)
837
+ pil_img = Image.fromarray(img_rgb)
838
+ img_bytes = io.BytesIO()
839
+ pil_img.save(img_bytes, format='PNG')
840
+ img_bytes.seek(0)
841
+ col1_b.download_button(
842
+ label="Download processed image",
843
+ data=img_bytes,
844
+ file_name="processed_image.png",
845
+ on_click="ignore",
846
+ icon=":material/download:",
847
+ mime="image/png"
848
+ )
849
+
850
+ with col2.expander(":blue[Quick overview of OCR recognition (with PPOCR)]", expanded=True):
851
+ with st.form("form1"):
852
+ key_ppocr_lang = st.selectbox("Choose language: :", dict_lang_ppocr.keys(), 20)
853
+ res_cnt = st.empty()
854
+ submit_detect = st.form_submit_button("Launch overview")
855
+
856
+ ##----------- Process OCR --------------------------------------------------------------
857
+ if submit_detect:
858
+ with res_cnt, st.spinner("PPOCR initialization ..."):
859
+ ocr = PaddleOCR(lang=dict_lang_ppocr[key_ppocr_lang]) #, show_log=False)
860
+ with res_cnt, st.spinner("OCR process ..."):
861
+ result = ocr.ocr(img_wrk)
862
+ # draw result
863
+ result = result[0]
864
+ if len(img_wrk.shape) == 3:
865
+ image = img_wrk.copy()
866
+ else:
867
+ image = cv2.cvtColor(img_wrk, cv2.COLOR_GRAY2RGB)
868
+ boxes = [line[0] for line in result]
869
+
870
+ txts = [line[1][0] for line in result]
871
+ scores = [line[1][1] for line in result]
872
+ im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/french.ttf')
873
+ im_show = Image.fromarray(im_show)
874
+ res_cnt.image(im_show, use_container_width=True)
fonts/arabic.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd25bfc3c6d745a8a4b4d415321aa5b43d99b61744b50d20e32931811ec7e268
3
+ size 102000
fonts/chinese_cht.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ce814960d0cdea1dd647180636babc1cf6a0acf0a9a9019424f4689acedd9ea
3
+ size 7376416
fonts/cyrillic.ttf ADDED
Binary file (56.2 kB). View file
 
fonts/french.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:525979822591a3447cfc49d943d6f7683508e25543407871c0ed8fed05fd2bd9
3
+ size 773236
fonts/german.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:525979822591a3447cfc49d943d6f7683508e25543407871c0ed8fed05fd2bd9
3
+ size 773236
fonts/hindi.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d519981fc26e2fe934bd25ec9dfe478e082c99063d868008b20996809e13ccc
3
+ size 222356
fonts/japan.ttc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11122490a5e3a862015c8894183750de59abf95c3936d63d5978293d92f23dba
3
+ size 3478068
fonts/kannada.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b337386a8e853ccba53c0c248bd06f025d7667b800ba74c72c66040d67315c6e
3
+ size 797016
fonts/korean.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0897316bdb2e308cea2841c54940f2ef5707856000aa07910c8bff39a47e40bd
3
+ size 1222780
fonts/latin.ttf ADDED
Binary file (54.9 kB). View file
 
fonts/marathi.ttf ADDED
Binary file (68.7 kB). View file
 
fonts/nepali.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d519981fc26e2fe934bd25ec9dfe478e082c99063d868008b20996809e13ccc
3
+ size 222356
fonts/persian.ttf ADDED
Binary file (31.6 kB). View file
 
fonts/simfang.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:521c6f7546b4eb64fa4b0cd604bbd36333a20a57e388c8e2ad2ad07b9e593864
3
+ size 10576012
fonts/spanish.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a3e632f80a2918e0536585ce52ecf2f379dc0f6b65b5b88d731ae52f9ac0d54
3
+ size 336452
fonts/tamil.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b771ac413157f6b1f1a52fb8ff1b56057f4b492fcce385ddd32ca12eee0c73b0
3
+ size 142512
fonts/telugu.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f82ab141b77d263f9ea9b31b47faf50c11310f42fce6d9dffeaaa334909bbf9
3
+ size 990048
fonts/urdu.ttf ADDED
Binary file (38.8 kB). View file
 
fonts/uyghur.ttf ADDED
Binary file (38.8 kB). View file
 
img_demo_enhance.png ADDED
ocr_comparator.py ADDED
@@ -0,0 +1,1301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This Streamlit app allows you to compare, from a given image, the results of different solutions:
2
+ EasyOcr, PaddleOCR, MMOCR, Tesseract
3
+ """
4
+
5
+ #import mim
6
+ #
7
+ #mim.install(['mmengine>=0.7.1,<1.1.0'])
8
+ #mim.install(['mmcv>=2.0.0rc4,<2.1.0'])
9
+ #mim.install(['mmdet>=3.0.rc5,<3.2.0'])
10
+ #mim.install(['mmocr'])
11
+
12
+ import streamlit as st
13
+ import plotly.express as px
14
+ import numpy as np
15
+ import math
16
+ import pandas as pd
17
+ from time import sleep
18
+
19
+ import cv2
20
+ from PIL import Image, ImageColor
21
+ import PIL
22
+ import easyocr
23
+ from paddleocr import PaddleOCR
24
+ #from mmocr.utils.ocr import MMOCR
25
+ import pytesseract
26
+ from pytesseract import Output
27
+ import os
28
+ from mycolorpy import colorlist as mcp
29
+
30
+ import os
31
+ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
32
+ ###################################################################################################
33
+ ## MAIN
34
+ ###################################################################################################
35
+ #def app():
36
+
37
+ ###################################################################################################
38
+ ## FUNCTIONS
39
+ ###################################################################################################
40
+ @st.cache_data
41
+ def convert_df(in_df):
42
+ """Convert data frame function, used by download button
43
+ Args:
44
+ in_df (data frame): data frame to convert
45
+ Returns:
46
+ data frame: converted data frame
47
+ """
48
+ # IMPORTANT: Cache the conversion to prevent computation on every rerun
49
+ return in_df.to_csv().encode('utf-8')
50
+ ###
51
+ def easyocr_coord_convert(in_list_coord):
52
+ """Convert easyocr coordinates to standard format used by others functions
53
+ Args:
54
+ in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max]
55
+ Returns:
56
+ list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ]
57
+ """
58
+ coord = in_list_coord
59
+ return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]]
60
+ ###
61
+ @st.cache_data
62
+ def initializations():
63
+ """Initializations for the app
64
+ Returns:
65
+ list of strings : list of OCR solutions names
66
+ (['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'])
67
+ dict : names and indices of the OCR solutions
68
+ ({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3})
69
+ list of dicts : list of languages supported by each OCR solution
70
+ list of int : columns for recognition details results
71
+ dict : confidence color scale
72
+ plotly figure : confidence color scale figure
73
+ """
74
+ # the readers considered
75
+ #out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']
76
+ #out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}
77
+ out_reader_type_list = ['EasyOCR', 'PPOCR', 'Tesseract']
78
+ out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'Tesseract': 2}
79
+ # Columns for recognition details results
80
+ out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract
81
+ # Dicts of laguages supported by each reader
82
+ out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \
83
+ 'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
84
+ 'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \
85
+ 'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \
86
+ 'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \
87
+ 'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \
88
+ 'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \
89
+ 'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \
90
+ 'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \
91
+ 'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \
92
+ 'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \
93
+ 'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \
94
+ 'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \
95
+ 'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \
96
+ 'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \
97
+ 'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \
98
+ 'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \
99
+ 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'}
100
+ out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \
101
+ 'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
102
+ 'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \
103
+ 'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \
104
+ 'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \
105
+ 'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \
106
+ 'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \
107
+ 'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \
108
+ 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \
109
+ 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \
110
+ 'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \
111
+ 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \
112
+ 'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \
113
+ 'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \
114
+ 'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
115
+ 'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}
116
+ #out_dict_lang_mmocr = {'English & Chinese': 'en'}
117
+ out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \
118
+ 'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \
119
+ 'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \
120
+ 'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \
121
+ 'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \
122
+ 'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \
123
+ 'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \
124
+ 'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \
125
+ 'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \
126
+ 'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \
127
+ 'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \
128
+ 'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \
129
+ 'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \
130
+ 'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \
131
+ 'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \
132
+ 'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \
133
+ 'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \
134
+ 'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \
135
+ 'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \
136
+ 'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \
137
+ 'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \
138
+ 'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \
139
+ 'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \
140
+ 'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \
141
+ 'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \
142
+ 'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \
143
+ 'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \
144
+ 'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \
145
+ 'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \
146
+ 'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'}
147
+ out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, \
148
+ #out_dict_lang_mmocr, \
149
+ out_dict_lang_tesseract]
150
+ # Initialization of detection form
151
+ if 'columns_size' not in st.session_state:
152
+ st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]]
153
+ if 'column_width' not in st.session_state:
154
+ st.session_state.column_width = [400] + [300 for x in out_reader_type_list[1:]]
155
+ if 'columns_color' not in st.session_state:
156
+ st.session_state.columns_color = ["rgb(228,26,28)"] + \
157
+ ["rgb(79, 43, 255)" for x in out_reader_type_list[1:]]
158
+ if 'list_coordinates' not in st.session_state:
159
+ st.session_state.list_coordinates = []
160
+ # Confidence color scale
161
+ out_list_confid = list(np.arange(0,101,1))
162
+ out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid))
163
+ out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \
164
+ for i in range(len(out_list_confid))}
165
+ list_y = [1 for i in out_list_confid]
166
+ df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y})
167
+ out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \
168
+ hover_data={'% confidence scale': True, 'y': False},
169
+ color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100],
170
+ color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square'])
171
+ out_fig.update_xaxes(showticklabels=False)
172
+ out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False)
173
+ out_fig.update_traces(marker_size=50)
174
+ out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \
175
+ showlegend=False)
176
+ return out_reader_type_list, out_reader_type_dict, out_list_dict_lang, \
177
+ out_cols_size, out_dict_back_colors, out_fig
178
+ ###
179
+ @st.cache_data
180
+ def init_easyocr(in_params):
181
+ """Initialization of easyOCR reader
182
+ Args:
183
+ in_params (list): list with the language
184
+ Returns:
185
+ easyocr reader: the easyocr reader instance
186
+ """
187
+ out_ocr = easyocr.Reader(in_params)
188
+ return out_ocr
189
+ ###
190
+
191
+ def init_ppocr(in_params):
192
+ """Initialization of PPOCR reader
193
+ Args:
194
+ in_params (dict): dict with parameters
195
+ Returns:
196
+ ppocr reader: the ppocr reader instance
197
+ """
198
+ out_ocr = PaddleOCR(lang=in_params[0], **in_params[1])
199
+ return out_ocr
200
+ ###
201
+ #@st.cache_data(show_spinner=False)
202
+ #def init_mmocr(in_params):
203
+ # """Initialization of MMOCR reader
204
+
205
+ # Args:
206
+ # in_params (dict): dict with parameters
207
+
208
+ # Returns:
209
+ # mmocr reader: the ppocr reader instance
210
+ # """
211
+ # out_ocr = MMOCR(recog=None, **in_params[1])
212
+ # return out_ocr
213
+ ###
214
+ def init_readers(in_list_params):
215
+ """Initialization of the readers, and return them as list
216
+ Args:
217
+ in_list_params (list): list of dicts of parameters for each reader
218
+ Returns:
219
+ list: list of the reader's instances
220
+ """
221
+ # Instantiations of the readers :
222
+ # - EasyOCR
223
+ with st.spinner("EasyOCR reader initialization in progress ..."):
224
+ reader_easyocr = init_easyocr([in_list_params[0][0]])
225
+ # - PPOCR
226
+ # Paddleocr
227
+ with st.spinner("PPOCR reader initialization in progress ..."):
228
+ reader_ppocr = init_ppocr(in_list_params[1])
229
+ # - MMOCR
230
+ #with st.spinner("MMOCR reader initialization in progress ..."):
231
+ # reader_mmocr = init_mmocr(in_list_params[2])
232
+ out_list_readers = [reader_easyocr, reader_ppocr] #, reader_mmocr]
233
+ return out_list_readers
234
+ ###
235
+ def load_image(in_image_file):
236
+ """Load input file and open it
237
+ Args:
238
+ in_image_file (string or Streamlit UploadedFile): image to consider
239
+ Returns:
240
+ string : locally saved image path (img.)
241
+ PIL.Image : input file opened with Pillow
242
+ matrix : input file opened with Opencv
243
+ """
244
+ #if isinstance(in_image_file, str):
245
+ # out_image_path = "img."+in_image_file.split('.')[-1]
246
+ #else:
247
+ # out_image_path = "img."+in_image_file.name.split('.')[-1]
248
+ if isinstance(in_image_file, str):
249
+ out_image_path = "tmp_"+in_image_file
250
+ else:
251
+ out_image_path = "tmp_"+in_image_file.name
252
+ img = Image.open(in_image_file)
253
+ img_saved = img.save(out_image_path)
254
+ # Read image
255
+ out_image_orig = Image.open(out_image_path)
256
+ out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)
257
+ return out_image_path, out_image_orig, out_image_cv2
258
+ ###
259
+ @st.cache_data(show_spinner=False)
260
+ def easyocr_detect(_in_reader, in_image_path, in_params):
261
+ """Detection with EasyOCR
262
+ Args:
263
+ _in_reader (EasyOCR reader) : the previously initialized instance
264
+ in_image_path (string ) : locally saved image path
265
+ in_params (list) : list with the parameters for detection
266
+ Returns:
267
+ list : list of the boxes coordinates
268
+ exception on error, string 'OK' otherwise
269
+ """
270
+ try:
271
+ dict_param = in_params[1]
272
+ detection_result = _in_reader.detect(in_image_path,
273
+ #width_ths=0.7,
274
+ #mag_ratio=1.5
275
+ **dict_param
276
+ )
277
+ easyocr_coordinates = detection_result[0][0]
278
+ # The format of the coordinate is as follows: [x_min, x_max, y_min, y_max]
279
+ # Format boxes coordinates for draw
280
+ out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates))
281
+ out_status = 'OK'
282
+ except Exception as e:
283
+ out_easyocr_boxes_coordinates = []
284
+ out_status = e
285
+ return out_easyocr_boxes_coordinates, out_status
286
+ ###
287
+ @st.cache_data(show_spinner=False)
288
+ def ppocr_detect(_in_reader, in_image_path):
289
+ """Detection with PPOCR
290
+ Args:
291
+ _in_reader (PPOCR reader) : the previously initialized instance
292
+ in_image_path (string ) : locally saved image path
293
+ Returns:
294
+ list : list of the boxes coordinates
295
+ exception on error, string 'OK' otherwise
296
+ """
297
+ # PPOCR detection method
298
+ try:
299
+ out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False)
300
+ out_status = 'OK'
301
+ except Exception as e:
302
+ out_ppocr_boxes_coordinates = []
303
+ out_status = e
304
+ return out_ppocr_boxes_coordinates, out_status
305
+ ###
306
+ #@st.cache_data(show_spinner=False)
307
+ #def mmocr_detect(_in_reader, in_image_path):
308
+ # """Detection with MMOCR
309
+
310
+ # Args:
311
+ # _in_reader (MMOCR reader) : the previously initialized instance
312
+ # in_image_path (string) : locally saved image path
313
+ # in_params (list) : list with the parameters
314
+
315
+ # Returns:
316
+ # list : list of the boxes coordinates
317
+ # exception on error, string 'OK' otherwise
318
+ # """
319
+ # # MMOCR detection method
320
+ # out_mmocr_boxes_coordinates = []
321
+ # try:
322
+ # det_result = _in_reader.readtext(in_image_path, details=True)
323
+ # bboxes_list = [res['boundary_result'] for res in det_result]
324
+ # for bboxes in bboxes_list:
325
+ # for bbox in bboxes:
326
+ # if len(bbox) > 9:
327
+ # min_x = min(bbox[0:-1:2])
328
+ # min_y = min(bbox[1:-1:2])
329
+ # max_x = max(bbox[0:-1:2])
330
+ # max_y = max(bbox[1:-1:2])
331
+ # #box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
332
+ # else:
333
+ # min_x = min(bbox[0:-1:2])
334
+ # min_y = min(bbox[1::2])
335
+ # max_x = max(bbox[0:-1:2])
336
+ # max_y = max(bbox[1::2])
337
+ # box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ]
338
+ # out_mmocr_boxes_coordinates.append(box4)
339
+ # out_status = 'OK'
340
+ # except Exception as e:
341
+ # out_status = e
342
+
343
+ # return out_mmocr_boxes_coordinates, out_status
344
+ ###
345
+ def cropped_1box(in_box, in_img):
346
+ """Construction of an cropped image corresponding to an area of the initial image
347
+ Args:
348
+ in_box (list) : box with coordinates
349
+ in_img (matrix) : image
350
+ Returns:
351
+ matrix : cropped image
352
+ """
353
+ box_ar = np.array(in_box).astype(np.int64)
354
+ x_min = box_ar[:, 0].min()
355
+ x_max = box_ar[:, 0].max()
356
+ y_min = box_ar[:, 1].min()
357
+ y_max = box_ar[:, 1].max()
358
+ out_cropped = in_img[y_min:y_max, x_min:x_max]
359
+ return out_cropped
360
+ ###
361
+ @st.cache_data(show_spinner=False)
362
+ def tesserocr_detect(in_image_path, _in_img, in_params):
363
+ """Detection with Tesseract
364
+ Args:
365
+ in_image_path (string) : locally saved image path
366
+ _in_img (PIL.Image) : image to consider
367
+ in_params (list) : list with the parameters for detection
368
+ Returns:
369
+ list : list of the boxes coordinates
370
+ exception on error, string 'OK' otherwise
371
+ """
372
+ try:
373
+ dict_param = in_params[1]
374
+ df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME)
375
+ df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \
376
+ [d['left'] + d['width'], d['top']], \
377
+ [d['left'] + d['width'], d['top'] + d['height']], \
378
+ [d['left'], d['top'] + d['height']], \
379
+ ], axis=1)
380
+ out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list()
381
+ out_status = 'OK'
382
+ except Exception as e:
383
+ out_tesserocr_boxes_coordinates = []
384
+ out_status = e
385
+ return out_tesserocr_boxes_coordinates, out_status
386
+ ###
387
+ @st.cache_data(show_spinner=False)
388
+ def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color):
389
+ """Detection process for each OCR solution
390
+ Args:
391
+ in_image_path (string) : locally saved image path
392
+ _in_list_images (list) : list of original image
393
+ _in_list_readers (list) : list with previously initialized reader's instances
394
+ in_list_params (list) : list with dict parameters for each OCR solution
395
+ in_color (tuple) : color for boxes around text
396
+ Returns:
397
+ list: list of detection results images
398
+ list: list of boxes coordinates
399
+ """
400
+ ## ------- EasyOCR Text detection
401
+ with st.spinner('EasyOCR Text detection in progress ...'):
402
+ easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \
403
+ in_image_path, in_list_params[0])
404
+ # Visualization
405
+ if easyocr_boxes_coordinates:
406
+ easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \
407
+ in_color, 'None', 3)
408
+ else:
409
+ easyocr_boxes_coordinates = easyocr_status
410
+ ##
411
+ ## ------- PPOCR Text detection
412
+ with st.spinner('PPOCR Text detection in progress ...'):
413
+ list_ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path)
414
+
415
+
416
+ # Visualization
417
+ try:
418
+ ppocr_boxes_coordinates = list_ppocr_boxes_coordinates[0]
419
+ ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \
420
+ in_color, 'None', 3)
421
+ except:
422
+ ppocr_boxes_coordinates = []
423
+ ppocr_image_detect = ppocr_status
424
+ ##
425
+ ## ------- MMOCR Text detection
426
+ #with st.spinner('MMOCR Text detection in progress ...'):
427
+ # mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path)
428
+ # # Visualization
429
+ # if mmocr_boxes_coordinates:
430
+ # mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \
431
+ # in_color, 'None', 3)
432
+ # else:
433
+ # mmocr_image_detect = mmocr_status
434
+ ##
435
+ ## ------- Tesseract Text detection
436
+ with st.spinner('Tesseract Text detection in progress ...'):
437
+ tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \
438
+ _in_list_images[0], \
439
+ in_list_params[2]) #in_list_params[3]
440
+ # Visualization
441
+ if tesserocr_status == 'OK':
442
+ tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\
443
+ in_color, 'None', 3)
444
+ else:
445
+ tesserocr_image_detect = tesserocr_status
446
+ ##
447
+ #
448
+ out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \
449
+ # mmocr_image_detect, \
450
+ tesserocr_image_detect]
451
+ out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \
452
+ # mmocr_boxes_coordinates, \
453
+ tesserocr_boxes_coordinates]
454
+ #
455
+ return out_list_images, out_list_coordinates
456
+ ###
457
+ def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4):
458
+ """Draw boxes around detected text
459
+ Args:
460
+ in_image (PIL.Image) : original image
461
+ in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right
462
+ [ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ],
463
+ [ ... ]
464
+ ]
465
+ in_color (tuple) : color for boxes around text
466
+ posit (str, optional) : position for text. Defaults to 'None'.
467
+ in_thickness (int, optional): thickness of the box. Defaults to 4.
468
+ Returns:
469
+ PIL.Image : original image with detected areas
470
+ """
471
+ work_img = in_image.copy()
472
+ if in_boxes_coordinates:
473
+ font = cv2.FONT_HERSHEY_SIMPLEX
474
+ for ind_box, box in enumerate(in_boxes_coordinates):
475
+ box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
476
+ work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness)
477
+ if posit != 'None':
478
+ if posit == 'top_left':
479
+ pos = tuple(box[0][0])
480
+ elif posit == 'top_right':
481
+ pos = tuple(box[1][0])
482
+ work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \
483
+ in_thickness,cv2.LINE_AA)
484
+ out_image_drawn = Image.fromarray(work_img)
485
+ else:
486
+ out_image_drawn = work_img
487
+ return out_image_drawn
488
+ ###
489
+ @st.cache_data(show_spinner=False)
490
+ def get_cropped(in_boxes_coordinates, in_image_cv):
491
+ """Construct list of cropped images corresponding of the input boxes coordinates list
492
+ Args:
493
+ in_boxes_coordinates (list) : list of boxes coordinates
494
+ in_image_cv (matrix) : original image
495
+ Returns:
496
+ list : list with cropped images
497
+ """
498
+ out_list_images = []
499
+ for box in in_boxes_coordinates:
500
+ cropped = cropped_1box(box, in_image_cv)
501
+ out_list_images.append(cropped)
502
+ return out_list_images
503
+ ###
504
+ def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params):
505
+ """Recognition process for each OCR solution
506
+ Args:
507
+ in_list_readers (list) : list with previously initialized reader's instances
508
+ in_image_cv (matrix) : original image
509
+ in_boxes_coordinates (list) : list of boxes coordinates
510
+ in_list_dict_params (list) : list with dict parameters for each OCR solution
511
+ Returns:
512
+ data frame : results for each OCR solution, except Tesseract
513
+ data frame : results for Tesseract
514
+ list : status for each recognition (exception or 'OK')
515
+ """
516
+ out_df_results = pd.DataFrame([])
517
+ list_text_easyocr = []
518
+ list_confidence_easyocr = []
519
+ list_text_ppocr = []
520
+ list_confidence_ppocr = []
521
+ #list_text_mmocr = []
522
+ #list_confidence_mmocr = []
523
+ # Create cropped images from detection
524
+ list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv)
525
+ # Recognize with EasyOCR
526
+ with st.spinner('EasyOCR Text recognition in progress ...'):
527
+ list_text_easyocr, list_confidence_easyocr, status_easyocr = \
528
+ easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0])
529
+ ##
530
+ # Recognize with PPOCR
531
+ with st.spinner('PPOCR Text recognition in progress ...'):
532
+ list_text_ppocr, list_confidence_ppocr, status_ppocr = \
533
+ ppocr_recog(list_cropped_images, in_list_dict_params[1])
534
+ ##
535
+ # Recognize with MMOCR
536
+ #with st.spinner('MMOCR Text recognition in progress ...'):
537
+ # list_text_mmocr, list_confidence_mmocr, status_mmocr = \
538
+ # mmocr_recog(list_cropped_images, in_list_dict_params[2])
539
+ ##
540
+ # Recognize with Tesseract
541
+ with st.spinner('Tesseract Text recognition in progress ...'):
542
+ out_df_results_tesseract, status_tesseract = \
543
+ tesserocr_recog(in_image_cv, in_list_dict_params[2], len(list_cropped_images))
544
+ #tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images))
545
+ ##
546
+ # Create results data frame
547
+ out_df_results = pd.DataFrame({'cropped_image': list_cropped_images,
548
+ 'text_easyocr': list_text_easyocr,
549
+ 'confidence_easyocr': list_confidence_easyocr,
550
+ 'text_ppocr': list_text_ppocr,
551
+ 'confidence_ppocr': list_confidence_ppocr,
552
+ #'text_mmocr': list_text_mmocr,
553
+ #'confidence_mmocr': list_confidence_mmocr
554
+ }
555
+ )
556
+ #out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract]
557
+ out_list_reco_status = [status_easyocr, status_ppocr, status_tesseract]
558
+ return out_df_results, out_df_results_tesseract, out_list_reco_status
559
+ ###
560
+ @st.cache_data
561
+ def easyocr_recog(in_list_images, _in_reader_easyocr, in_params):
562
+ """Recognition with EasyOCR
563
+ Args:
564
+ in_list_images (list) : list of cropped images
565
+ _in_reader_easyocr (EasyOCR reader) : the previously initialized instance
566
+ in_params (dict) : parameters for recognition
567
+ Returns:
568
+ list : list of recognized text
569
+ list : list of recognition confidence
570
+ string/Exception : recognition status
571
+ """
572
+ progress_bar = st.progress(0)
573
+ out_list_text_easyocr = []
574
+ out_list_confidence_easyocr = []
575
+ ## ------- EasyOCR Text recognition
576
+ try:
577
+ step = 0*len(in_list_images) # first recognition process
578
+ #nb_steps = 4 * len(in_list_images)
579
+ nb_steps = 3 * len(in_list_images)
580
+ for ind_img, cropped in enumerate(in_list_images):
581
+ result = _in_reader_easyocr.recognize(cropped, **in_params)
582
+ try:
583
+ out_list_text_easyocr.append(result[0][1])
584
+ out_list_confidence_easyocr.append(np.round(100*result[0][2], 1))
585
+ except:
586
+ out_list_text_easyocr.append('Not recognize')
587
+ out_list_confidence_easyocr.append(100.)
588
+ progress_bar.progress((step+ind_img+1)/nb_steps)
589
+ out_status = 'OK'
590
+ except Exception as e:
591
+ out_status = e
592
+ progress_bar.empty()
593
+ return out_list_text_easyocr, out_list_confidence_easyocr, out_status
594
+ ###
595
+ @st.cache_data
596
+ def ppocr_recog(in_list_images, in_params):
597
+ """Recognition with PPOCR
598
+ Args:
599
+ in_list_images (list) : list of cropped images
600
+ in_params (dict) : parameters for recognition
601
+ Returns:
602
+ list : list of recognized text
603
+ list : list of recognition confidence
604
+ string/Exception : recognition status
605
+ """
606
+ ## ------- PPOCR Text recognition
607
+ out_list_text_ppocr = []
608
+ out_list_confidence_ppocr = []
609
+ try:
610
+ reader_ppocr = PaddleOCR(**in_params)
611
+ step = 1*len(in_list_images) # second recognition process
612
+ #nb_steps = 4 * len(in_list_images)
613
+ nb_steps = 3 * len(in_list_images)
614
+ progress_bar = st.progress(step/nb_steps)
615
+ for ind_img, cropped in enumerate(in_list_images):
616
+ list_result = reader_ppocr.ocr(cropped, det=False, cls=False)
617
+ result = list_result[0]
618
+ try:
619
+ out_list_text_ppocr.append(result[0][0])
620
+ out_list_confidence_ppocr.append(np.round(100*result[0][1], 1))
621
+ except:
622
+ out_list_text_ppocr.append('Not recognize')
623
+ out_list_confidence_ppocr.append(100.)
624
+ progress_bar.progress((step+ind_img+1)/nb_steps)
625
+ out_status = 'OK'
626
+ except Exception as e:
627
+ out_status = e
628
+ progress_bar.empty()
629
+ return out_list_text_ppocr, out_list_confidence_ppocr, out_status
630
+ ###
631
+ #@st.cache_data(suppress_st_warning=True, show_spinner=False)
632
+ #def mmocr_recog(in_list_images, in_params):
633
+ # """Recognition with MMOCR
634
+
635
+ # Args:
636
+ # in_list_images (list) : list of cropped images
637
+ # in_params (dict) : parameters for recognition
638
+
639
+ # Returns:
640
+ # list : list of recognized text
641
+ # list : list of recognition confidence
642
+ # string/Exception : recognition status
643
+ # """
644
+ # ## ------- MMOCR Text recognition
645
+ # out_list_text_mmocr = []
646
+ # out_list_confidence_mmocr = []
647
+ # try:
648
+ # reader_mmocr = MMOCR(det=None, **in_params)
649
+ # step = 2*len(in_list_images) # third recognition process
650
+ # nb_steps = 4 * len(in_list_images)
651
+ # progress_bar = st.progress(step/nb_steps)
652
+
653
+ # for ind_img, cropped in enumerate(in_list_images):
654
+ # result = reader_mmocr.readtext(cropped, details=True)
655
+ # try:
656
+ # out_list_text_mmocr.append(result[0]['text'])
657
+ # out_list_confidence_mmocr.append(np.round(100* \
658
+ # (np.array(result[0]['score']).mean()), 1))
659
+ # except:
660
+ # out_list_text_mmocr.append('Not recognize')
661
+ # out_list_confidence_mmocr.append(100.)
662
+ # progress_bar.progress((step+ind_img+1)/nb_steps)
663
+ # out_status = 'OK'
664
+ # except Exception as e:
665
+ # out_status = e
666
+ # progress_bar.empty()
667
+
668
+ # return out_list_text_mmocr, out_list_confidence_mmocr, out_status
669
+
670
+ ###
671
+ @st.cache_data
672
+ def tesserocr_recog(in_img, in_params, in_nb_images):
673
+ """Recognition with Tesseract
674
+ Args:
675
+ in_image_cv (matrix) : original image
676
+ in_params (dict) : parameters for recognition
677
+ in_nb_images : nb cropped images (used for progress bar)
678
+ Returns:
679
+ Pandas data frame : recognition results
680
+ string/Exception : recognition status
681
+ """
682
+ ## ------- Tesseract Text recognition
683
+ step = 3*in_nb_images # fourth recognition process
684
+ #nb_steps = 4 * in_nb_images
685
+ nb_steps = 3 * in_nb_images
686
+ progress_bar = st.progress(step/nb_steps)
687
+ try:
688
+ out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME)
689
+ out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \
690
+ [d['left'] + d['width'], d['top']], \
691
+ [d['left']+d['width'], d['top']+d['height']], \
692
+ [d['left'], d['top'] + d['height']], \
693
+ ], axis=1)
694
+ out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img))
695
+ out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \
696
+ .reset_index(drop=True)
697
+ out_status = 'OK'
698
+ except Exception as e:
699
+ out_df_result = pd.DataFrame([])
700
+ out_status = e
701
+ progress_bar.progress(1.)
702
+ return out_df_result, out_status
703
+ ###
704
+ def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
705
+ in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \
706
+ in_font_scale=1, in_conf_threshold=65):
707
+ """Draw recognized text on original image, for each OCR solution used
708
+ Args:
709
+ in_image (matrix) : original image
710
+ in_boxes_coordinates (list) : list of boxes coordinates
711
+ in_list_texts (list): list of recognized text for each recognizer (except Tesseract)
712
+ in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract)
713
+ in_df_results_tesseract (Pandas data frame): Tesseract recognition results
714
+ in_font_scale (int, optional): text font scale. Defaults to 3.
715
+ Returns:
716
+ shows the results container
717
+ """
718
+ img = in_image.copy()
719
+ nb_readers = len(in_reader_type_list)
720
+ list_reco_images = [img.copy() for i in range(nb_readers)]
721
+ for num, box_ in enumerate(in_boxes_coordinates):
722
+ box = np.array(box_).astype(np.int64)
723
+ # For each box : draw the results of each recognizer
724
+ for ind_r in range(nb_readers-1):
725
+ confid = np.round(in_list_confid[ind_r][num], 0)
726
+ rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
727
+ if confid < in_conf_threshold:
728
+ text_color = (0, 0, 0)
729
+ else:
730
+ text_color = (255, 255, 255)
731
+ if in_font_scale < 1.:
732
+ thickness = 1
733
+ else:
734
+ thickness = 2
735
+ list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \
736
+ (box[0][0], box[0][1]), \
737
+ (box[2][0], box[2][1]), rgb_color, -1)
738
+ list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \
739
+ in_list_texts[ind_r][num], \
740
+ (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
741
+ cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, thickness)
742
+ # Add Tesseract process
743
+ if not in_df_results_tesseract.empty:
744
+ ind_tessocr = nb_readers-1
745
+ for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()):
746
+ box = np.array(box_).astype(np.int64)
747
+ confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0)
748
+ rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
749
+ if confid < in_conf_threshold:
750
+ text_color = (0, 0, 0)
751
+ else:
752
+ text_color = (255, 255, 255)
753
+ list_reco_images[ind_tessocr] = \
754
+ cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \
755
+ (box[2][0], box[2][1]), rgb_color, -1)
756
+ try:
757
+ list_reco_images[ind_tessocr] = \
758
+ cv2.putText(list_reco_images[ind_tessocr], \
759
+ in_df_results_tesseract.iloc[num]['text'], \
760
+ (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
761
+ cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)
762
+ except:
763
+ pass
764
+ with show_reco.container():
765
+ # Draw the results, 2 images per line
766
+ reco_lines = math.ceil(len(in_reader_type_list) / 2)
767
+ column_width = 400
768
+ for ind_lig in range(0, reco_lines+1, 2):
769
+ cols = st.columns(2)
770
+ for ind_col in range(2):
771
+ ind = ind_lig + ind_col
772
+ if ind < len(in_reader_type_list):
773
+ if in_reader_type_list[ind] == 'Tesseract':
774
+ column_title = '<p style="font-size: 20px;color:rgb(228,26,28); \
775
+ ">Recognition with ' + in_reader_type_list[ind] + \
776
+ '<sp style="font-size: 17px"> (with its own detector) \
777
+ </sp></p>'
778
+ else:
779
+ column_title = '<p style="font-size: 20px;color:rgb(228,26,28); \
780
+ ">Recognition with ' + \
781
+ in_reader_type_list[ind]+ '</p>'
782
+ cols[ind_col].markdown(column_title, unsafe_allow_html=True)
783
+ if st.session_state.list_reco_status[ind] == 'OK':
784
+ cols[ind_col].image(list_reco_images[ind], \
785
+ width=column_width, use_container_width=True)
786
+ else:
787
+ cols[ind_col].write(list_reco_status[ind], \
788
+ use_container_width=True)
789
+ st.markdown(' 💡 Bad font size? you can adjust it below and refresh:')
790
+ ###
791
+ def highlight():
792
+ """ Highlight choosen detector results
793
+ """
794
+ with show_detect.container():
795
+ columns_size = [1 for x in reader_type_list]
796
+ column_width = [300 for x in reader_type_list]
797
+ columns_color = ["rgb(12, 5, 105)" for x in reader_type_list]
798
+ columns_size[reader_type_dict[st.session_state.detect_reader]] = 2
799
+ column_width[reader_type_dict[st.session_state.detect_reader]] = 400
800
+ columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)"
801
+ columns = st.columns(columns_size, ) #gap='medium')
802
+ for ind_col, col in enumerate(columns):
803
+ column_title = '<p style="font-size: 20px;color:'+columns_color[ind_col] + \
804
+ ';">Detection with ' + reader_type_list[ind_col]+ '</p>'
805
+ col.markdown(column_title, unsafe_allow_html=True)
806
+ if isinstance(list_images[ind_col+2], PIL.Image.Image):
807
+ col.image(list_images[ind_col+2], width=column_width[ind_col], \
808
+ use_container_width=True)
809
+ else:
810
+ col.write(list_images[ind_col+2], use_container_width=True)
811
+ st.session_state.columns_size = columns_size
812
+ st.session_state.column_width = column_width
813
+ st.session_state.columns_color = columns_color
814
+ ###
815
+ @st.cache(show_spinner=False)
816
+ def get_demo():
817
+ """Get the demo files
818
+ Returns:
819
+ PIL.Image : input file opened with Pillow
820
+ PIL.Image : input file opened with Pillow
821
+ """
822
+ out_img_demo_1 = Image.open("img_demo_1.jpg")
823
+ out_img_demo_2 = Image.open("img_demo_2.jpg")
824
+ return out_img_demo_1, out_img_demo_2
825
+ ###
826
+ def raz():
827
+ st.session_state.list_coordinates = []
828
+ st.session_state.list_images = []
829
+ st.session_state.detect_reader = reader_type_list[0]
830
+ st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
831
+ st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]]
832
+ st.session_state.columns_color = ["rgb(228,26,28)"] + \
833
+ ["rgb(79, 43, 255)" for x in reader_type_list[1:]]
834
+ # Clear caches
835
+ easyocr_detect.clear()
836
+ ppocr_detect.clear()
837
+ #mmocr_detect.clear()
838
+ tesserocr_detect.clear()
839
+ process_detect.clear()
840
+ get_cropped.clear()
841
+ easyocr_recog.clear()
842
+ ppocr_recog.clear()
843
+ #mmocr_recog.clear()
844
+ tesserocr_recog.clear()
845
+ ###
846
+ ###################################################################################################
847
+ ## STREAMLIT APP
848
+ ###################################################################################################
849
+ # ##----------- Initializations ---------------------------------------------------------------------
850
+ #print("PID : ", os.getpid())
851
+ print("ocr comparator")
852
+ st.set_option("client.showErrorDetails", False)
853
+ st.markdown("""
854
+ <style>
855
+ .block-container {
856
+ padding-top: 1rem;
857
+ padding-bottom: 1rem;
858
+ padding-left: 1rem;
859
+ padding-right: 2rem;
860
+ }
861
+ </style>
862
+ """, unsafe_allow_html=True)
863
+ st.title("OCR solutions comparator")
864
+ #st.markdown("##### *EasyOCR, PPOCR, Tesseract*")
865
+ st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*")
866
+ #st.markdown("#### PID : " + str(os.getpid()))
867
+ # Initializations
868
+ with st.spinner("Initializations in progress ..."):
869
+ reader_type_list, reader_type_dict, list_dict_lang, \
870
+ cols_size, dict_back_colors, fig_colorscale = initializations()
871
+ img_demo_1, img_demo_2 = get_demo()
872
+ ##----------- Choose language & image -------------------------------------------------------------
873
+ st.markdown("#### Choose languages for the text recognition:")
874
+ lang_col = st.columns(4)
875
+ easyocr_key_lang = lang_col[0].selectbox(reader_type_list[0]+" :", list_dict_lang[0].keys(), 26)
876
+ easyocr_lang = list_dict_lang[0][easyocr_key_lang]
877
+ ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22)
878
+ ppocr_lang = list_dict_lang[1][ppocr_key_lang]
879
+ #mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0)
880
+ #mmocr_lang = list_dict_lang[2][mmocr_key_lang]
881
+ #tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35)
882
+ #tesserocr_lang = list_dict_lang[3][tesserocr_key_lang]
883
+ tesserocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 35)
884
+ tesserocr_lang = list_dict_lang[2][tesserocr_key_lang]
885
+ st.markdown("#### Choose picture:")
886
+ cols_pict = st.columns([1, 2])
887
+ img_typ = cols_pict[0].radio("", ['Upload file', 'Take a picture', 'Use a demo file'], \
888
+ index=0, on_change=raz)
889
+ if img_typ == 'Upload file':
890
+ image_file = cols_pict[1].file_uploader("Upload a file:", type=["jpg","jpeg","png"], on_change=raz)
891
+ if img_typ == 'Take a picture':
892
+ image_file = cols_pict[1].camera_input("Take a picture:", on_change=raz)
893
+ if img_typ == 'Use a demo file':
894
+ with st.expander('Choose a demo file:', expanded=True):
895
+ demo_used = st.radio('', ['File 1', 'File 2'], index=0, \
896
+ horizontal=True, on_change=raz)
897
+ cols_demo = st.columns([1, 2])
898
+ cols_demo[0].markdown('###### File 1')
899
+ cols_demo[0].image(img_demo_1, width=150)
900
+ cols_demo[1].markdown('###### File 2')
901
+ cols_demo[1].image(img_demo_2, width=300)
902
+ if demo_used == 'File 1':
903
+ image_file = 'img_demo_1.jpg'
904
+ else:
905
+ image_file = 'img_demo_2.jpg'
906
+ ##----------- Process input image -----------------------------------------------------------------
907
+ if image_file is not None:
908
+ try:
909
+ image_path, image_orig, image_cv2 = load_image(image_file)
910
+ list_images = [image_orig, image_cv2]
911
+ except Exception as e:
912
+ image_file = None
913
+ st.exception(e)
914
+ ##----------- Form with original image & hyperparameters for detectors ----------------------------
915
+ with st.form("form1"):
916
+ col1, col2 = st.columns(2, ) #gap="medium")
917
+ col1.markdown("##### Original image")
918
+ col1.image(list_images[0], width=400)
919
+ col2.markdown("##### Hyperparameters values for detection")
920
+ with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \
921
+ expanded=False):
922
+ t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \
923
+ help="min_size (int, default = 10) - Filter text box smaller than \
924
+ minimum value in pixel")
925
+ t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \
926
+ help="text_threshold (float, default = 0.7) - Text confidence threshold")
927
+ t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \
928
+ help="low_text (float, default = 0.4) - Text low-bound score")
929
+ t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \
930
+ help="link_threshold (float, default = 0.4) - Link confidence threshold")
931
+ t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \
932
+ help='''canvas_size (int, default = 2560) \n
933
+ Maximum e size. Image bigger than this value will be resized down''')
934
+ t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \
935
+ help="mag_ratio (float, default = 1) - Image magnification ratio")
936
+ t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \
937
+ help='''slope_ths (float, default = 0.1) - Maximum slope \
938
+ (delta y/delta x) to considered merging. \n
939
+ Low valuans tiled boxes will not be merged.''')
940
+ t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \
941
+ help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n
942
+ Boxes wiifferent level should not be merged.''')
943
+ t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \
944
+ help='''height_ths (float, default = 0.5) - Maximum different in box height. \n
945
+ Boxes wiery different text size should not be merged.''')
946
+ t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \
947
+ help="width_ths (float, default = 0.5) - Maximum horizontal \
948
+ distance to merge boxes.")
949
+ t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \
950
+ help='''add_margin (float, default = 0.1) - \
951
+ Extend bounding boxes in all direction by certain value. \n
952
+ This is rtant for language with complex script (E.g. Thai).''')
953
+ t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \
954
+ help="optimal_num_chars (int, default = None) - If specified, bounding boxes \
955
+ with estimated number of characters near this value are returned first.")
956
+ with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \
957
+ expanded=False):
958
+ t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \
959
+ help='Type of detection algorithm selected. (default = DB)')
960
+ t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \
961
+ help='''The maximum size of the long side of the image. (default = 960)\n
962
+ Limit thximum image height and width.\n
963
+ When theg side exceeds this value, the long side will be resized to this size, and the short side \
964
+ will be ed proportionally.''')
965
+ t1_det_db_thresh = st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \
966
+ help='''Binarization threshold value of DB output map. (default = 0.3) \n
967
+ Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''')
968
+ t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \
969
+ help='''The threshold value of the DB output box. (default = 0.6) \n
970
+ DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n
971
+ Boxes sclower than this value will be discard.''')
972
+ t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \
973
+ help='''The expanded ratio of DB output box. (default = 1.6) \n
974
+ Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''')
975
+ t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \
976
+ help="Binarization threshold value of EAST output map. (default = 0.8)")
977
+ t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \
978
+ help='''The threshold value of the EAST output box. (default = 0.1) \n
979
+ Boxes sclower than this value will be discarded.''')
980
+ t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \
981
+ help="The NMS threshold value of EAST model output box. (default = 0.2)")
982
+ t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \
983
+ help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \
984
+ to calculate. (default = fast) \n
985
+ Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''')
986
+
987
+ #with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
988
+ # expanded=False):
989
+ # t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \
990
+ # 'FCE_CTW_DCNv2','MaskRCNN_CTW','MaskRCNN_IC15', \
991
+ # 'MaskRCNN_IC17', 'PANet_CTW','PANet_IC15','PS_CTW',\
992
+ # 'PS_IC15','Tesseract','TextSnake'], 10, \
993
+ # help='Text detection algorithm. (default = PANet_IC15)')
994
+ # st.write("###### *More about text detection models* 👉 \
995
+ # [here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)")
996
+ # t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \
997
+ # help='The maximum x-axis distance to merge boxes. (defaut=20)')
998
+
999
+ #with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \
1000
+ with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
1001
+ expanded=False):
1002
+ t3_psm = st.selectbox('Page segmentation mode (psm)', \
1003
+ [' - Default', \
1004
+ ' 4 Assume a single column of text of variable sizes', \
1005
+ ' 5 Assume a single uniform block of vertically aligned text', \
1006
+ ' 6 Assume a single uniform block of text', \
1007
+ ' 7 Treat the image as a single text line', \
1008
+ ' 8 Treat the image as a single word', \
1009
+ ' 9 Treat the image as a single word in a circle', \
1010
+ '10 Treat the image as a single character', \
1011
+ '11 Sparse text. Find as much text as possible in no \
1012
+ particular order', \
1013
+ '13 Raw line. Treat the image as a single text line, \
1014
+ bypassing hacks that are Tesseract-specific'])
1015
+ t3_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \
1016
+ '1 Neural nets LSTM engine only', \
1017
+ '2 Legacy + LSTM engines', \
1018
+ '3 Default, based on what is available'], 3)
1019
+ t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \
1020
+ placeholder='Limit tesseract to recognize only this characters', \
1021
+ help='Example for numbers only : 0123456789')
1022
+ color_hex = col2.color_picker('Set a color for box outlines:', '#004C99')
1023
+ color_part = color_hex.lstrip('#')
1024
+ color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4))
1025
+ submit_detect = st.form_submit_button("Launch detection")
1026
+ ##----------- Process text detection --------------------------------------------------------------
1027
+ if submit_detect:
1028
+ # Process text detection
1029
+ if t0_optimal_num_chars == 0:
1030
+ t0_optimal_num_chars = None
1031
+ # Construct the config Tesseract parameter
1032
+ t3_config = ''
1033
+ psm = t3_psm[:2]
1034
+ if psm != ' -':
1035
+ t3_config += '--psm ' + psm.strip()
1036
+ oem = t3_oem[:1]
1037
+ if oem != '3':
1038
+ t3_config += ' --oem ' + oem
1039
+ if t3_whitelist != '':
1040
+ t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist
1041
+ list_params_det = \
1042
+ [[easyocr_lang, \
1043
+ {'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \
1044
+ 'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \
1045
+ 'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \
1046
+ 'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \
1047
+ 'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \
1048
+ 'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \
1049
+ }], \
1050
+ [ppocr_lang, \
1051
+ {'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \
1052
+ 'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \
1053
+ 'det_db_unclip_ratio': t1_det_db_unclip_ratio, \
1054
+ 'det_east_score_thresh': t1_det_east_score_thresh, \
1055
+ 'det_east_cover_thresh': t1_det_east_cover_thresh, \
1056
+ 'det_east_nms_thresh': t1_det_east_nms_thresh, \
1057
+ 'det_db_score_mode': t1_det_db_score_mode}],
1058
+ #[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}],
1059
+ [tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}]
1060
+ ]
1061
+ show_info1 = st.empty()
1062
+ show_info1.info("Readers initializations in progress (it may take a while) ...")
1063
+ list_readers = init_readers(list_params_det)
1064
+ show_info1.info("Text detection in progress ...")
1065
+ list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \
1066
+ list_params_det, color)
1067
+ show_info1.empty()
1068
+ # Clear previous recognition results
1069
+ st.session_state.df_results = pd.DataFrame([])
1070
+ st.session_state.list_readers = list_readers
1071
+ st.session_state.list_coordinates = list_coordinates
1072
+ st.session_state.list_images = list_images
1073
+ st.session_state.list_params_det = list_params_det
1074
+ if 'columns_size' not in st.session_state:
1075
+ st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
1076
+ if 'column_width' not in st.session_state:
1077
+ st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]]
1078
+ if 'columns_color' not in st.session_state:
1079
+ st.session_state.columns_color = ["rgb(228,26,28)"] + \
1080
+ ["rgb(79, 43, 255)" for x in reader_type_list[1:]]
1081
+ if st.session_state.list_coordinates:
1082
+ list_coordinates = st.session_state.list_coordinates
1083
+ list_images = st.session_state.list_images
1084
+ list_readers = st.session_state.list_readers
1085
+ list_params_det = st.session_state.list_params_det
1086
+ ##----------- Text detection results --------------------------------------------------------------
1087
+ st.subheader("Text detection")
1088
+ show_detect = st.empty()
1089
+ list_ok_detect = []
1090
+ with show_detect.container():
1091
+ columns = st.columns(st.session_state.columns_size, ) #gap='medium')
1092
+ for no_col, col in enumerate(columns):
1093
+ column_title = '<p style="font-size: 20px;color:' + \
1094
+ st.session_state.columns_color[no_col] + \
1095
+ ';">Detection with ' + reader_type_list[no_col]+ '</p>'
1096
+ col.markdown(column_title, unsafe_allow_html=True)
1097
+ if isinstance(list_images[no_col+2], PIL.Image.Image):
1098
+ col.image(list_images[no_col+2], width=st.session_state.column_width[no_col], \
1099
+ use_container_width=True)
1100
+ list_ok_detect.append(reader_type_list[no_col])
1101
+ else:
1102
+ col.write(list_images[no_col+2], use_container_width=True)
1103
+ st.subheader("Text recognition")
1104
+ st.markdown("##### Using detection performed above by:")
1105
+ st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \
1106
+ horizontal=True, on_change=highlight)
1107
+ ##----------- Form with hyperparameters for recognition -----------------------
1108
+ st.markdown("##### Hyperparameters values for recognition:")
1109
+ with st.form("form2"):
1110
+ with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \
1111
+ expanded=False):
1112
+ t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \
1113
+ help="decoder (string, default = 'greedy') - options are 'greedy', \
1114
+ 'beamsearch' and 'wordbeamsearch.")
1115
+ t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \
1116
+ help="beamWidth (int, default = 5) - How many beam to keep when decoder = \
1117
+ 'beamsearch' or 'wordbeamsearch'.")
1118
+ t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \
1119
+ help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \
1120
+ but use more memory.")
1121
+ t0_workers = st.slider('workers', 0, 10, 0, step=1, \
1122
+ help="workers (int, default = 0) - Number thread used in of dataloader.")
1123
+ t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \
1124
+ placeholder='Force EasyOCR to recognize only this subset of characters', \
1125
+ help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n
1126
+ Usefor specific problem (E.g. license plate, etc.)''')
1127
+ t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \
1128
+ placeholder='Block subset of character (will be ignored if allowlist is given)', \
1129
+ help='''blocklist (string) - Block subset of character. This argument will be \
1130
+ ignored if allowlist is given.''')
1131
+ t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \
1132
+ help="detail (int, default = 1) - Set this to 0 for simple output")
1133
+ t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \
1134
+ help='paragraph (bool, default = False) - Combine result into paragraph')
1135
+ t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \
1136
+ help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \
1137
+ this value will be passed into model 2 times.\n
1138
+ Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n
1139
+ The with more confident level will be returned as a result.''')
1140
+ t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \
1141
+ help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \
1142
+ contrast text box')
1143
+ with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \
1144
+ expanded=False):
1145
+ t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \
1146
+ help="Type of recognition algorithm selected. (default=CRNN)")
1147
+ t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \
1148
+ help="When performing recognition, the batchsize of forward images. \
1149
+ (default=30)")
1150
+ t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \
1151
+ help="The maximum text length that the recognition algorithm can recognize. \
1152
+ (default=25)")
1153
+ t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \
1154
+ help="Whether to recognize spaces. (default=TRUE)")
1155
+ t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \
1156
+ help="Filter the output by score (from the recognition model), and those \
1157
+ below this score will not be returned. (default=0.5)")
1158
+
1159
+ #with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
1160
+ # expanded=False):
1161
+ # t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \
1162
+ # 'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \
1163
+ # 'SATRN','SATRN_sm','SEG','Tesseract'], 7, \
1164
+ # help='Text recognition algorithm. (default = SAR)')
1165
+ # st.write("###### *More about text recognition models* 👉 \
1166
+ # [here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)")
1167
+
1168
+ #with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \
1169
+ with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
1170
+ expanded=False):
1171
+ t3r_psm = st.selectbox('Page segmentation mode (psm)', \
1172
+ [' - Default', \
1173
+ ' 4 Assume a single column of text of variable sizes', \
1174
+ ' 5 Assume a single uniform block of vertically aligned \
1175
+ text', \
1176
+ ' 6 Assume a single uniform block of text', \
1177
+ ' 7 Treat the image as a single text line', \
1178
+ ' 8 Treat the image as a single word', \
1179
+ ' 9 Treat the image as a single word in a circle', \
1180
+ '10 Treat the image as a single character', \
1181
+ '11 Sparse text. Find as much text as possible in no \
1182
+ particular order', \
1183
+ '13 Raw line. Treat the image as a single text line, \
1184
+ bypassing hacks that are Tesseract-specific'])
1185
+ t3r_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \
1186
+ '1 Neural nets LSTM engine only', \
1187
+ '2 Legacy + LSTM engines', \
1188
+ '3 Default, based on what is available'], 3)
1189
+ t3r_whitelist = st.text_input('Limit tesseract to recognize only this \
1190
+ characters :', \
1191
+ placeholder='Limit tesseract to recognize only this characters', \
1192
+ help='Example for numbers only : 0123456789')
1193
+ submit_reco = st.form_submit_button("Launch recognition")
1194
+ if submit_reco:
1195
+ process_detect.clear()
1196
+ ##----------- Process recognition ------------------------------------------
1197
+ reader_ind = reader_type_dict[st.session_state.detect_reader]
1198
+ list_boxes = list_coordinates[reader_ind]
1199
+ # Construct the config Tesseract parameter
1200
+ t3r_config = ''
1201
+ psm = t3r_psm[:2]
1202
+ if psm != ' -':
1203
+ t3r_config += '--psm ' + psm.strip()
1204
+ oem = t3r_oem[:1]
1205
+ if oem != '3':
1206
+ t3r_config += ' --oem ' + oem
1207
+ if t3r_whitelist != '':
1208
+ t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist
1209
+ list_params_rec = \
1210
+ [{'decoder': t0_decoder, 'beamWidth': t0_beamWidth, \
1211
+ 'batch_size': t0_batch_size, 'workers': t0_workers, \
1212
+ 'allowlist': t0_allowlist, 'blocklist': t0_blocklist, \
1213
+ 'detail': t0_detail, 'paragraph': t0_paragraph, \
1214
+ 'contrast_ths': t0_contrast_ths, 'adjust_contrast': t0_adjust_contrast
1215
+ },
1216
+ { **list_params_det[1][1], **{'rec_algorithm': t1_rec_algorithm, \
1217
+ 'rec_batch_num': t1_rec_batch_num, 'max_text_length': t1_max_text_length, \
1218
+ 'use_space_char': t1_use_space_char, 'drop_score': t1_drop_score}, \
1219
+ **{'lang': list_params_det[1][0]}
1220
+ },
1221
+ #{'recog': t2_recog},
1222
+ {'lang': tesserocr_lang, 'config': t3r_config}
1223
+ ]
1224
+ show_info2 = st.empty()
1225
+ with show_info2.container():
1226
+ st.info("Text recognition in progress ...")
1227
+ df_results, df_results_tesseract, list_reco_status = \
1228
+ process_recog(list_readers, list_images[1], list_boxes, list_params_rec)
1229
+ show_info2.empty()
1230
+ st.session_state.df_results = df_results
1231
+ st.session_state.list_boxes = list_boxes
1232
+ st.session_state.df_results_tesseract = df_results_tesseract
1233
+ st.session_state.list_reco_status = list_reco_status
1234
+ if 'df_results' in st.session_state:
1235
+ if not st.session_state.df_results.empty:
1236
+ ##----------- Show recognition results ------------------------------------------------------------
1237
+ results_cols = st.session_state.df_results.columns
1238
+ list_col_text = np.arange(1, len(cols_size), 2)
1239
+ list_col_confid = np.arange(2, len(cols_size), 2)
1240
+ dict_draw_reco = {'in_image': st.session_state.list_images[1], \
1241
+ 'in_boxes_coordinates': st.session_state.list_boxes, \
1242
+ 'in_list_texts': [st.session_state.df_results[x].to_list() \
1243
+ for x in results_cols[list_col_text]], \
1244
+ 'in_list_confid': [st.session_state.df_results[x].to_list() \
1245
+ for x in results_cols[list_col_confid]], \
1246
+ 'in_dict_back_colors': dict_back_colors, \
1247
+ 'in_df_results_tesseract' : st.session_state.df_results_tesseract, \
1248
+ 'in_reader_type_list': reader_type_list
1249
+ }
1250
+ show_reco = st.empty()
1251
+ with st.form("form3"):
1252
+ st.plotly_chart(fig_colorscale, use_container_width=True)
1253
+ col_font, col_threshold = st.columns(2)
1254
+ col_font.slider('Font scale', 0.1, 7., 1., step=0.1, key="font_scale_sld")
1255
+ col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \
1256
+ step=1, key="conf_threshold_sld")
1257
+ col_threshold.write("(text color is black below this % confidence threshold, \
1258
+ and white above)")
1259
+ draw_reco_images(**dict_draw_reco)
1260
+ submit_resize = st.form_submit_button("Refresh")
1261
+ if submit_resize:
1262
+ draw_reco_images(**dict_draw_reco, \
1263
+ in_font_scale=st.session_state.font_scale_sld, \
1264
+ in_conf_threshold=st.session_state.conf_threshold_sld)
1265
+ st.subheader("Recognition details")
1266
+ #with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True):
1267
+ with st.expander("Detailed areas for EasyOCR, PPOCR", expanded=True):
1268
+ cols = st.columns(cols_size)
1269
+ cols[0].markdown('#### Detected area')
1270
+ for i in range(1, (len(reader_type_list)-1)*2, 2):
1271
+ cols[i].markdown('#### with ' + reader_type_list[i//2])
1272
+ for row in st.session_state.df_results.itertuples():
1273
+ #cols = st.columns(1 + len(reader_type_list)*2)
1274
+ cols = st.columns(cols_size)
1275
+ cols[0].image(row.cropped_image, width=150)
1276
+ for ind_col in range(1, len(cols), 2):
1277
+ cols[ind_col].write(getattr(row, results_cols[ind_col]))
1278
+ cols[ind_col+1].write("("+str( \
1279
+ getattr(row, results_cols[ind_col+1]))+"%)")
1280
+ st.download_button(
1281
+ label="Download results as CSV file",
1282
+ data=convert_df(st.session_state.df_results),
1283
+ file_name='OCR_comparator_results.csv',
1284
+ mime='text/csv',
1285
+ )
1286
+ if not st.session_state.df_results_tesseract.empty:
1287
+ with st.expander("Detailed areas for Tesseract", expanded=False):
1288
+ cols = st.columns([2,2,1])
1289
+ cols[0].markdown('#### Detected area')
1290
+ cols[1].markdown('#### with Tesseract')
1291
+ for row in st.session_state.df_results_tesseract.itertuples():
1292
+ cols = st.columns([2,2,1])
1293
+ cols[0].image(row.cropped, width=150)
1294
+ cols[1].write(getattr(row, 'text'))
1295
+ cols[2].write("("+str(getattr(row, 'conf'))+"%)")
1296
+ st.download_button(
1297
+ label="Download Tesseract results as CSV file",
1298
+ data=convert_df(st.session_state.df_results),
1299
+ file_name='OCR_comparator_Tesseract_results.csv',
1300
+ mime='text/csv',
1301
+ )
requirements.txt CHANGED
@@ -1,22 +1,21 @@
1
- # https://github.com/streamlit/streamlit/issues/5315
2
- easyocr
3
- altair<5.0
4
- streamlit==1.26.0
5
- opencv-python-headless #==4.5.5.64
6
- torch==2.0.0 #==1.12.1
7
- torchvision==0.15.1 #==0.13.1
8
- Pillow
9
- #mmcv-full --no-binary mmcv-full
10
- #mmcv
11
- #mmdet #==2.28.2
12
- #mmengine
13
- #mmocr #==0.6.3
14
- paddleocr #==2.6
15
- paddlepaddle #==2.4.0rc0
16
- numpy #==1.23.4
17
- mycolorpy #==1.5.1
18
- plotly #==5.10.0
19
- plotly-express #==0.4.1
20
- pytesseract #==0.3.10
21
- streamlit_option_menu
22
- openmim
 
1
+ easyocr==1.7.1
2
+ streamlit==1.43.0
3
+ opencv-python-headless==4.9.0.80
4
+ torch==2.4.0
5
+ torchvision==0.19.0
6
+ Pillow
7
+ #mmcv-full --no-binary mmcv-full
8
+ #mmcv
9
+ #mmdet #==2.28.2
10
+ #mmengine
11
+ #mmocr #==0.6.3
12
+ paddleocr==2.8.0
13
+ paddlepaddle==2.6.0
14
+ numpy #==1.23.4
15
+ mycolorpy==1.5.1
16
+ plotly-express==0.4.1
17
+ altair==4.0
18
+ pytesseract==0.3.10
19
+ streamlit_option_menu
20
+ #openmim
21
+ imutils