MaheshP98's picture
Update app.py
de27e81 verified
raw
history blame
8.22 kB
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
from datetime import datetime, timedelta
import os
import logging
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import tempfile
# Configure logging to match the log format
logging.basicConfig(level=logging.INFO, format='%(asctime)s,%(msecs)03d - %(levelname)s - %(message)s')
def process_files(uploaded_files):
"""
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
Returns a dataframe, plot path, PDF path, and AMC expiry message.
"""
# Log received files
logging.info(f"Received uploaded files: {uploaded_files}")
if not uploaded_files:
logging.warning("No files uploaded.")
return None, None, None, "Please upload at least one valid CSV file."
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
if not valid_files:
logging.warning("No valid CSV files uploaded.")
return None, None, None, "Please upload at least one valid CSV file."
logging.info("Loading logs from uploaded files...")
all_data = []
# Load and combine CSV files
for file in valid_files:
try:
df = pd.read_csv(file.name)
logging.info(f"Loaded {len(df)} records from {file.name}")
all_data.append(df)
except Exception as e:
logging.error(f"Failed to load {file.name}: {str(e)}")
return None, None, None, f"Error loading {file.name}: {str(e)}"
if not all_data:
logging.warning("No data loaded from uploaded files.")
return None, None, None, "No valid data found in uploaded files."
combined_df = pd.concat(all_data, ignore_index=True)
logging.info(f"Combined {len(combined_df)} total records.")
logging.info(f"Loaded {len(combined_df)} log records from uploaded files.")
# Generate usage plot
logging.info("Generating usage plot...")
plot_path = generate_usage_plot(combined_df)
if plot_path:
logging.info("Usage plot generated successfully.")
else:
logging.error("Failed to generate usage plot.")
return combined_df, None, None, "Failed to generate usage plot."
# Detect anomalies
logging.info("Detecting anomalies...")
anomaly_df = detect_anomalies(combined_df)
if anomaly_df is None:
logging.error("Failed to detect anomalies.")
else:
logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies.")
# Process AMC expiries
logging.info("Processing AMC expiries...")
amc_message, amc_df = process_amc_expiries(combined_df)
# Generate PDF report
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
# Prepare output dataframe (combine original data with anomalies)
output_df = combined_df.copy()
if anomaly_df is not None:
output_df['anomaly'] = anomaly_df['anomaly']
return output_df, plot_path, pdf_path, amc_message
def generate_usage_plot(df):
"""
Generate a bar plot of usage_count by equipment and status.
Returns the path to the saved plot.
"""
try:
plt.figure(figsize=(10, 6))
for status in df['status'].unique():
subset = df[df['status'] == status]
plt.bar(subset['equipment'] + f" ({status})", subset['usage_count'], label=status)
plt.xlabel("Equipment (Status)")
plt.ylabel("Usage Count")
plt.title("Usage Count by Equipment and Status")
plt.legend()
plt.xticks(rotation=45)
plt.tight_layout()
# Save plot to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
plt.savefig(tmp.name, format='png')
plot_path = tmp.name
plt.close()
return plot_path
except Exception as e:
logging.error(f"Failed to generate usage plot: {str(e)}")
return None
def detect_anomalies(df):
"""
Detect anomalies in usage_count using Isolation Forest.
Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
"""
try:
model = IsolationForest(contamination=0.1, random_state=42)
anomalies = model.fit_predict(df[['usage_count']].values)
anomaly_df = df.copy()
anomaly_df['anomaly'] = anomalies
return anomaly_df
except Exception as e:
logging.error(f"Failed to detect anomalies: {str(e)}")
return None
def process_amc_expiries(df):
"""
Identify devices with AMC expiries within 7 days from 2025-06-05.
Returns a message and a dataframe of devices with upcoming expiries.
"""
try:
current_date = datetime(2025, 6, 5)
threshold = current_date + timedelta(days=7)
df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
upcoming_expiries = df[df['amc_expiry'] <= threshold]
unique_devices = upcoming_expiries['equipment'].unique()
message = f"Found {len(unique_devices)} devices with upcoming AMC expiries."
logging.info(message)
return message, upcoming_expiries
except Exception as e:
logging.error(f"Failed to process AMC expiries: {str(e)}")
return f"Error processing AMC expiries: {str(e)}", None
def generate_pdf_report(original_df, anomaly_df, amc_df):
"""
Generate a PDF report with data summary, anomalies, and AMC expiries.
Returns the path to the saved PDF.
"""
try:
if original_df is None:
logging.warning("No data available for PDF generation.")
return None
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
c = canvas.Canvas(tmp.name, pagesize=letter)
c.drawString(100, 750, "Equipment Log Analysis Report")
y = 700
# Summary
c.drawString(100, y, f"Total Records: {len(original_df)}")
c.drawString(100, y-20, f"Devices: {', '.join(original_df['equipment'].unique())}")
y -= 40
# Anomalies
if anomaly_df is not None:
num_anomalies = sum(anomaly_df['anomaly'] == -1)
c.drawString(100, y, f"Anomalies Detected: {num_anomalies}")
if num_anomalies > 0:
anomaly_equipment = anomaly_df[anomaly_df['anomaly'] == -1]['equipment'].unique()
c.drawString(100, y-20, f"Anomalous Devices: {', '.join(anomaly_equipment)}")
y -= 40
else:
c.drawString(100, y, "Anomaly detection failed.")
y -= 20
# AMC Expiries
if amc_df is not None and not amc_df.empty:
c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}")
for _, row in amc_df.iterrows():
c.drawString(100, y-20, f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}")
y -= 20
else:
c.drawString(100, y, "No AMC expiry data available.")
y -= 20
c.showPage()
c.save()
return tmp.name
except Exception as e:
logging.error(f"Failed to generate PDF report: {str(e)}")
return None
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Equipment Log Analysis")
with gr.Row():
file_input = gr.File(file_count="multiple", label="Upload CSV Files")
process_button = gr.Button("Process Files")
with gr.Row():
output_df = gr.Dataframe(label="Processed Data")
output_plot = gr.Image(label="Usage Plot")
with gr.Row():
output_message = gr.Textbox(label="AMC Expiry Status")
output_pdf = gr.File(label="Download PDF Report")
process_button.click(
fn=process_files,
inputs=[file_input],
outputs=[output_df, output_plot, output_pdf, output_message]
)
if __name__ == "__main__":
logging.info("Application starting...")
demo.launch(server_name="0.0.0.0", server_port=7860)